5132
J. Am. Chem. Soc. 1996, 118, 5132-5133
Communications to the Editor
tBu3SiO), oxidative addition of H2NC6H4X to (silox)3Ta (1)
deviated from the expected N-H cleavage.19 Oxidative addi-
tions of aryl C-N and related C-O bonds to 1 are reported
herein.
Arylamine C-N Bond Oxidative Addition to
t
(silox)3Ta (silox ) Bu3SiO)
Jeffrey B. Bonanno, Thomas P. Henry, David R. Neithamer,
Peter T. Wolczanski,* and Emil B. Lobkovsky
As Figure 1 illustrates, treatment of (silox)3Ta (1) with H2-
NC6H4X afforded N-H addition to provide (silox)3HTaNH-
(C6H4X) (2-X) and/or C-N activation to give (silox)3(H2N)-
Ta(C6H4-X) (3-X) depending on the substituent. For example,
Baker Laboratory, Department of Chemistry
Cornell UniVersity, Ithaca, New York 14853
1
the H NMR spectrum of 3-p-CF3 exhibited a broad singlet at
δ 5.27 attributed to the NH2, and its IR spectrum revealed telltale
3375- and 3460-cm-1 NH stretching vibrations.20 Related
thermally stable 3-X derivatives were similarly discerned, while
prototypical downfield TaH chemical shifts clearly distinguished
the 2-X species,21 which subsequently eliminated H2 to give
(silox)3TadN(C6H4X), as previously reported.19
ReceiVed January 11, 1996
Oxidative additions of carbon-nitrogen and -oxygen single
bonds may be critical in the hydrodenitrogenation (HDN)1,2 and
hydrodeoxygenation (HDO)3 of crude oil,4 yet few clear
examples are evident.5-11 In support of such pathways,
extensive investigations of transition metal-mediated C-N12-15
and C-O16-18 bond formationssthe microscopic reverseshave
recently been undertaken. While studying substituent effects
on 1,2-H2-elimination from (silox)3HTaN(H)(C6H4X) (silox )
A single-crystal X-ray structural study of (silox)3(H2N)Ta-
(C6H4-p-CF3) (3-p-CF3) revealed a slightly distorted square-
pyramidal geometry (Figure 1). Angles between the apical (O2)
and basal silox oxygens are 104.7(3)° ( O2-Ta-O1) and
102.9(2)° ( O2-Ta-O3), while related O2-Ta-N and O2-
Ta-C angles are 112.8(3)° and 108.1(3)°, respectively. The
geometry attenuates strong trans-influences of the C6H4-p-CF3,
NH2 ( N-Ta-C ) 139.1(4)°), and apical silox (d(Ta-Oap)
) 1.865(6) Å) groups, yet accommodates the steric demands
of the slightly flexed ( Ta-O-Si(ave) ) 168(5)°) silox
linkages ( O1-Ta-O3 ) 152.4(3)°). Remaining bond dis-
tances in 3-p-CF3 are normal, with d(Ta-C) ) 2.233(8) Å and
d(Ta-Oeq)ave ) 1.914(18) Å, but the amide bond length (d(Ta-
N) ) 1.998(8) Å) is somewhat long,22 probably because silox
O(pπ) f Ta(dπ) interactions are competitive with N(pπ) f
Ta(dπ) donation.
The propensity for C-N vs N-H activation may be cor-
related with substituent Hammett σ-parameters,23 as indicated
in Table 1. Since (silox)3Ta (1) reacts with various function-
alities and steric factors are critical, the substrate survey is
limited, but contrasting effects are revealed. Although the
correlation is moderate (F ) -0.69, R ) 0.93), substituents
that increase the basicity of aniline increase the relative rate of
NH activation, suggesting that nucleophilic attack by the amine
at an empty dxz/dyz orbital of 1 precedes oxidative addition. Use
of separate parameters indicates a slightly greater resonance (FR
) -0.95) than inductive (FI ) -0.65) contribution (F ) -1.6,
R ) 0.95),23,24 reminiscent of a recent correlation involving
arylthiolate reductive elimination.25 Substituent effects on CN
(1) (a) Ho, T. C. Catal. ReV.-Sci. Eng. 1988, 30, 117-160. (b) Ka¨tzer,
J. R.; Sivasubramanian, R. C. Catal. ReV.-Sci. Eng. 1979, 20, 155-208.
(c) Shah, Y. T.; Cronauer, D. C. Catal. ReV.-Sci. Eng. 1979, 20, 209-301.
(d) Laine, R. M. Catal. ReV.-Sci. Eng. 1983, 25, 459-474.
(2) Gray, S. D.; Weller, K. J.; Bruck, M. A.; Briggs, P. M.; Wigley, D.
E. J. Am. Chem. Soc. 1995, 117, 10678-10693 and references therein.
(3) Furimsky, E. Catal. ReV. Sci Eng. 1983, 25, 421-458.
(4) Gary, J. H.; Handwerk, G. E. Petroleum Refining: Technology and
Economics, 3rd ed.; Marcel Dekker, Inc.: New York, 1993. (b) Speight, J.
G. The Chemistry and Technology of Petroleum; Marcel Dekker: New York,
1983.
(5) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry, 2nd ed.;
University Science Books: Mill Valley, CA, 1987. (b) Bryndza, H. E.;
Tam, W. Chem. ReV. 1988, 88, 1163-1188.
(6) (a) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Leonelli, J.;
Marchant, N. S.; Smith, C. A.; Taylor, L. C. E. J. Am. Chem. Soc. 1985,
107, 3722-3724. (b) Hagadorn, J. R.; Arnold, J. Organometallics 1994,
131, 4670-4672.
(7) Atagi, A. M.; Over, D. E.; McAlister, D. R.; Mayer, J. M. J. Am.
Chem. Soc. 1991, 113, 870-874.
(8) (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Inorg. Chem.
1994, 33, 1448-1457. (b) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc.
1994, 116, 7953-7954.
(9) (a) Wang, M. D.; Alper, H. J. Am. Chem. Soc. 1992, 114, 7018-
7024. (b) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931.
(c) Ikeda, S.-I.; Chatani, N.; Murai, S. Organometallics 1992, 11, 3494-
3495.
(10) Mayer, J. M. Polyhedron, 1995, 14, 3273-3292.
(11) CX (X ) N, O) multiple bond cleavage reactions are more common.
See: (a) Hall, K. A.; Mayer, J. M. J. Am. Chem. Soc. 1992, 114, 10402-
10411. (b) Su, F.-M.; Bryan, J. C.; Jang, S.; Mayer, J. M. Polyhedron 1989,
8, 1261-1277. (c) Miller, R. L.; Wolczanski, P. T.; Rheingold, A. L. J.
Am. Chem. Soc. 1993, 115, 10422-10423. (d) Meyer, K. E.; Walsh, P. J.;
Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 974-985. (e) Schrock, R.
R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291-
4293.
(19) Bonanno, J. B.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem.
Soc. 1994, 116, 11159-11160.
t
(20) 3-p-CF3: 1H NMR (THF-d8) δ 1.18 (s, Bu), 5.27 (s, NH2), 7.51
(12) (a) Kosugi, M.; Sano, H.; Kamehama, M.; Migita, T. Nippon Kagaku
Kaishi 1985, 3, 547-551. (b) Kosugi, M.; Kameyama, M.; Migita, T. Chem.
Lett. 1983, 927-928.
(d, J ) 8 Hz, 2 H, Ar), 8.20 (d, J ) 8 Hz, 2 H, Ar); 13C{1H} NMR δ 24.60
3
(SiC), 31.05 (C(CH3)3), 124.53 (q, Ar, JCF ) 4 Hz), 125.65 (q, CF3, JCF
2
) 272 Hz), 129.23 (q, Ar, JCF ) 32 Hz), 137.93 (Ar), 201.99 (TaC);19F
(13) (a) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598-
11599. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609-
3612. (c) Driver, M. S.; Harwig, J. F. J. Am. Chem. Soc. 1995, 117, 4708-
4709. (d) Paul, F.; Patt, J.; Harwig, J. F. J. Am. Chem. Soc. 1994, 116,
5969-5970.
NMR δ -62.55. Anal. Calcd for TaSi3NF3O3C43H87: C, 52.26; H, 8.87;
N, 1.42. Found: C, 52.40; H, 8.81; N, 0.98. Crystal data: monoclinic, P21/
n, a ) 14.236(9) Å, b ) 26.209(8) Å, and c ) 15.068(4) Å, â ) 111.09(8)°,
V ) 5246(4) Å3, Z ) 4, Dcalcd ) 1.252 g/cm3, T ) 293(2) K, 6790
independent reflections, full matrix refinement on F 2 (Syntex P4, SHELX93),
R1(F) ) 7.58%, R2(wF 2) ) 14.25%, GOF(F 2) ) 0.943.
(14) (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1348-1350. (b) Guram, A. S.; Buchwald, S. L. J.
Am. Chem. Soc. 1994, 116, 7901-7902.
(21) 2-X, 1H NMR (C6D6) δ(TaH): X ) m-CF3, 21.63; m-F, 21.63; p-F,
21.42; H, 21.47; p-Ph, 21.54; p-Me, 21.38; p-OMe, 21.26; p-NMe2, 21.13.
(22) (a) Chisholm, M. H.; Tan, L.-S.; Huffman, J. C. J. Am. Chem. Soc.
1982, 104, 4879-4884. (b) Chisholm, M. H.; Huffman, J. C.; Tan, L.-S.
Inorg. Chem. 1981, 20, 1859-1866. (c) Chamberlain, L. R.; Steffey, B.
D.; Rothwell, I. P.; Huffman, J. C. Polyhedron 1989, 8, 341-349.
(23) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic
Chemistry, 2nd ed.; Harper and Row: New York, 1981.
(15) Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Orgaonmetallics
1994, 13, 3921-3931.
(16) Thompson, J. S.; Randall, S. L.; Atwood, J. D. Organometallics
1991, 10, 3906-3910.
(17) (a) Bernard, K. A.; Atwood, J. D. Organometallics 1989, 8, 795-
800. (b) Bernard, K. A.; Atwood, J. D. Organometallics 1988, 7, 235-
236. (c) Bernard, K. A.; Atwood, J. D. Organometallics 1987, 6, 1133-
1134.
(24) From σI and σR° values in ref 23, using methodology of: Wells, P.
R.; Ehrenson, S.; Taft, R. W. Prog. Phys. Org. Chem. 1968, 6, 147-322.
(25) Baran˜ano, D.; Harwig, J. F. J. Am. Chem. Soc. 1995, 117, 2937-
2938.
(18) Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A.
Organometallics 1985, 4, 1130-1136.
S0002-7863(96)00092-3 CCC: $12.00 © 1996 American Chemical Society