ACS Medicinal Chemistry Letters
Letter
μM because PAK2 is not completely inhibited. We do observe
significant inhibition of pMEK Ser289 with compound 3 at 6−
20 μM, the lowest tested concentrations that show complete
and unambiguous inhibition of both pPAK1 and pPAK2.
Consistent with this observation, compound 3 inhibited
proliferation of Su86.86 cell line only above a concentration
of 2 μM. In contrast, by applying a mixture of compound 3 and
PAK2 shRNA, we achieved inhibition of downstream signaling
and cell proliferation at a significantly lower 0.21 μM
concentration (Supporting Information). Thus, for cell lines
that are dependent upon and express both isoforms, we
hypothesize that a dual PAK1/2 inhibitor would be necessary
for efficient inhibition of cell proliferation. Attempts to identify
a cancer cell line (and cancer indications) that are dependent
upon and express only PAK1 were not successful.
In summary, we have developed a potent and selective PAK1
inhibitor. Due to its allosteric binding mode, compound 3
demonstrates high selectivity for inhibition of PAK1 over other
PAK isoforms and the kinome in general. In addition, the lack
of activity on GPCRs combined with favorable physicochemical
properties make it an excellent research compound to study
biological functions of PAK1 on the cellular level. Furthermore,
we have demonstrated that this compound shows target
modulation of PAK1 in cells but does not result in inhibition
of cell proliferation. Further studies concerning biological
consequences of PAK1 inhibition will be reported later.
guanosine 5′-triphosphatase; H1, the histamine H1 receptor;
M1, the muscarinic M1 receptor; PAK, p-21-activated kinase
REFERENCES
■
(1) Jaffer, Z. M.; Chernoff, J. p21-Activated Kinases: Three More Join
the Pak. Int. J. Biochem. Cell Biol. 2002, 34, 713−717.
(2) Ye, D. Z.; Field, J. PAK Signaling in Cancer. Cell. Logistics 2012,
105−116.
(3) Eswaran, J.; Soundararajan, M.; Kumar, R.; Knapp, S. UnPAKing
the Class Differences among p21-Activated Kinases. Trends Biochem.
Sci. 2008, 33, 394−403.
(4) Kumar, R.; Gururaj, A. E.; Barnes, C. J. P21-Activated Kinases in
Cancer. Nat. Rev. Cancer 2006, 6, 459−471.
(5) Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. PAK Signalling
during the Development and Progression of Cancer. Nat. Rev. Cancer
2014, 14, 13−25.
(6) Ma, Q.-L.; Yang, F.; Frautschy, S. A.; Cole, G. M. PAK in
Alzheimer Disease, Huntington Disease and X-Linked Mental
Retardation. Cell. Logistics 2012, 2, 117−125.
(7) Hayashi, M. L.; Shankaranarayana Rao, B. S.; Seo, J.-S.; Choi, H.-
S.; Dolan, B. M.; Choi, S.-Y.; Chattarji, S.; Tonegawa, S. Inhibition of
p21-Activated Kinase Rescues Symptoms of Fragile X Syndrome in
Mice. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 11489−11494.
(8) Ong, C. C.; Jubb, A. M.; Zhou, W.; Haverty, P. M.; Harris, A. L.;
Belvin, M.; Friedman, L. S.; Koeppen, H.; Hoeflich, K. P. p21-
Activated Kinase 1: PAK’ed with Potential. Oncotarget 2011, 2, 491−
496.
(9) Jagadeeshan, S.; Krishnamoorthy, Y. R.; Singhal, M.;
Subramanian, A.; Mavuluri, J.; Lakshmi, A.; Roshini, A.; Baskar, G.;
Ravi, M.; Joseph, L. D.; Sadasivan, K.; Krishnan, A.; Nair, A. S.;
Venkatraman, G.; Rayala, S. K. Transcriptional Regulation of
Fibronectin by p21-Activated Kinase-1 Modulates Pancreatic Tumori-
genesis. Oncogene 2014, 1−10.
(10) Eswaran, J.; Li, D.-Q.; Shah, A.; Kumar, R. Molecular Pathways:
Targeting p21-Activated Kinase 1 Signaling in Cancer − Oppor-
tunities, Challenges, and Limitations. Clin. Cancer Res. 2012, 18,
3743−3749.
(11) Coleman, N.; Kissil, J. Recent Advances in the Development of
p21-Activated Kinase Inhibitors. Cell. Logistics 2012, 2, 132−135.
(12) Murray, B. W.; Guo, C.; Piraino, J.; Westwick, J. K.; Zhang, C.;
Lamerdin, J.; Dagostino, E.; Knighton, D.; Loi, C.-M.; Zager, M.;
Kraynov, E.; Popoff, I.; Christensen, J. G.; Martinez, R.; Kephart, S. E.;
Marakovits, J.; Karlicek, S.; Bergqvist, S.; Smeal, T. Small-Molecule
p21-Activated Kinase Inhibitor PF-3758309 Is a Potent Inhibitor of
Oncogenic Signaling and Tumor Growth. Proc. Natl. Acad. Sci. U.S.A.
2010, 107, 9446−9451.
(13) Dolan, B. M.; Duron, S. G.; Campbell, D. A.; Vollrath, B.;
Shankaranarayana Rao, B. S.; Ko, H.-Y.; Lin, G. G.; Govindarajan, A.;
Choi, S.-Y.; Tonegawa, S. Rescue of Fragile X Syndrome Phenotypes
in Fmr1 KO Mice by the Small-Molecule PAK Inhibitor FRAX486.
Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 5671−5676.
(14) Licciulli, S.; Maksimoska, J.; Zhou, C.; Troutman, S.; Kota, S.;
Liu, Q.; Duron, S.; Campbell, D.; Chernoff, J.; Field, J.; Marmorstein,
R.; Kissil, J. L. FRAX597, a Small Molecule Inhibitor of the p21-
Activated Kinases, Inhibits Tumorigenesis of Neurofibromatosis Type
2 (NF2)-Associated Schwannomas. J. Biol. Chem. 2013, 288, 29105−
29114.
(15) Staben, S. T.; Feng, J. A.; Lyle, K.; Belvin, M.; Boggs, J.; Burch, J.
D.; Chua, C.-C.; Cui, H.; Dipasquale, A. G.; Friedman, L. S.; Heise, C.;
Koeppen, H.; Kotey, A.; Mintzer, R.; Oh, A.; Roberts, D. A.; Rouge, L.;
Rudolph, J.; Tam, C.; Wang, W.; Xiao, Y.; Young, A.; Zhang, Y.;
Hoeflich, K. P. Back Pocket Flexibility Provides Group II p21-
Activated Kinase (PAK) Selectivity for Type I 1/2 Kinase Inhibitors. J.
Med. Chem. 2014, 57, 1033−1045.
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete experimental procedures, biochemical assays, crys-
tallization, structure determination, rationale explaining selec-
tivity over PAK1, inhibition of cell proliferation, and safety
panel assays. The Supporting Information is available free of
Accession Codes
The coordinates for the PAK1:1, PAK1:2, and PAK1:11
complexes have been deposited in the Protein Data Bank with
accession codes 4ZLO, 4ZJJ, and 4ZJI, respectively.
AUTHOR INFORMATION
Corresponding Author
■
Present Addresses
§Patronus Therapeutics, Inc., San Francisco, California 94549,
United States.
∥PIQUR Therapeutics AG, Hohe Winde-Strasse 120, 4059
Basel, Switzerland.
Author Contributions
The manuscript was written through contributions of all
authors.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Christian Guenat, Francis Roll, and Odile Decoret
for analytical support, and we are grateful to Alex Bussenault
and Guillaume Camus for their excellent technical assistance.
(16) Cowan-Jacob, S.; Jahnke, W.; Knapp, S. Novel Approaches for
Targeting Kinases: Allosteric Inhibition, Allosteric Activation and
Pseudokinases. Future Med. Chem. 2014, 541−561.
(17) Wu, W.-I.; Voegtli, W. C.; Sturgis, H. L.; Dizon, F. P.; Vigers, G.
P. A.; Brandhuber, B. J. Crystal Structure of Human AKT1 with an
ABBREVIATIONS
■
ATP, adenosine 5′-triphosphate; DFG, aspartate-phenylalanine-
glycine loop; GPCR, G-protein coupled receptor; GTPase,
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX