10.1002/anie.201913620
Angewandte Chemie International Edition
RESEARCH ARTICLE
[4] a) Y. Y. Yang, J. M. Ascano, H. C. Hang, J. Am. Chem. Soc. 2010, 132,
3640-3641; b) W. P. Heal, B. Jovanovic, S. Bessin, M. H. Wright, A. I.
Magee, E. W. Tate, Chem. Commun. 2011, 47, 4081-4083.
[5] a) J. Y. Axup, K. M. Bajjuri, M. Ritland, B. M. Hutchins, C. H. Kim,
S. A. Kazane, R. Halder, J. S. Forsyth, A. F. Santidrian, K. Stafin, Y.
Lu, H. Tran, A. J. Seller, S. L. Biroc, A. Szydlik, J. K. Pinkstaff, F.
Tian, S. C. Sinha, B. Felding-Habermann, V. V. Smider, P. G. Schultz,
Proc. Natl. Acad. Sci. USA 2012, 109, 16101-16106; b) A. Beck, L.
Goetsch, C. Dumontet, N. Corvaia, Nat. Rev. Drug Discovery 2017, 16,
315-337; c) B. Oller-Salvia, G. Kym, J. W. Chin, Angew. Chem., Int.
Ed. 2018, 57, 2831-2834; Angew. Chem. 2018, 130, 2881–2884.
[6] C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 651-653.
[7] P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. Kent, Science 1994,
266, 776-779.
[8] B. A. Griffin, S. R. Adams, R. Y. Tsien, Science 1998, 281, 269-272.
[9] E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007-2010.
[10] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem. Int. Ed. 2002, 41, 2596-2599; Angew. Chem. 2002, 114, 2708-
2711.
[11] a) S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi, Science
2008, 320, 664-667; b) N. J. Agard, J. A. Prescher, C. R. Bertozzi, J.
Am. Chem. Soc. 2004, 126, 15046-15047.
(v/v, 1:1) at room temperature (Figure S54b). Therefore, the
experiments in Figures 5b-5d and S54 showed that the present
method could be used in release of biologically active molecules.
Finally, we attempted reactions of different substituted
chloroquinoxalines 17–19 containing C2A(S83C) with 12, and
conjugate 23 was observed in almost quantitative yields (Figure 5g)
determined by HPLC, ESI-MS and gel analysis (Figure 5h).
Therefore, the present method provides a novel strategy for
bioorthogonal ligations and cleavages, and it will be widely applied
in chemical labelling of biomolecules, purification or enrichment of
chemically modified proteins, construction of antibody drug
conjugates and other fields.
Conclusion
In summary, we have developed a novel kind of bioorthogonal
reactions of readily available chloroquinoxalines (CQ) and ortho-
dithiophenols (DT) incorporated with functional molecules such as
amino acids, biotin, fluorescein, peptides and protein, and the
[12] a) M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008,
130, 13518-13519; b) H. Wu, N. K. Devaraj, Acc. Chem. Res. 2018, 51,
1249-1259; c) B. L. Oliveira, Z. Guo, G. J. L. Bernardes, Chem. Soc.
Rev. 2017, 46, 4895-4950.
[13] a) J. P. M. Antonio, R. Russo, C. P. Carvalho, P. M. S. D. Cal, P. M. P.
Gois, Chem. Soc. Rev. 2019, 48, 3513-3536; b) B. Akgun, D. G. Hall,
Angew. Chem. Int. Ed. 2018, 57, 13028-13044; Angew. Chem. 2018,
130, 13210-13228.
[14] a) J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G.
Zhang, C. Wang, P. R. Chen, Nature 2019, 569, 509-513; b) L. Donato,
A. Mourot, C. M. Davenport, C. Herbivo, D. Warther, J. Léonard, F.
Bolze, J.-F. Nicoud, R. H. Kramer, M. Goeldner, A. Specht, Angew.
Chem. Int. Ed. 2012, 51, 1840-1843; Angew. Chem. 2012, 124, 1876-
1879.
[15] a) T. Volker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew.
Chem. Int. Ed. 2014, 53, 10536-10540; Angew. Chem. 2014, 126,
10705-10710; b) R. M. Yusop, A. Unciti-Broceta, E. M. Johansson, R.
M. Sanchez-Martin, M. Bradley, Nat. Chem. 2011, 3, 239-243; c) J. Li,
J. Yu, J. Zhao, J. Wang, S. Zheng, S. Lin, L. Chen, M. Yang, S. Jia, X.
Zhang, P. R. Chen, Nat. Chem. 2014, 6, 352-361.
[16] a) R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen, M. S.
Robillard, Angew. Chem. Int. Ed. 2013, 52, 14112-14116; Angew.
Chem. 2013, 125, 14362-14366; b) R. Rossin, R. M. Versteegen, J. Wu,
A. Khasanov, H. J. Wessels, E. J. Steenbergen, W. ten Hoeve, H. M.
Janssen, A. H. A. M. van Onzen, P. J. Hudson, M. S. Robillard, Nat.
Commun. 2018, 9, 1484. c) R. Rossin, S. M. van Duijnhoven, W. Ten
Hoeve, H. M. Janssen, L. H. Kleijn, F. J. Hoeben, R. M. Versteegen,
M. S. Robillard, Bioconjug. Chem. 2016, 27, 1697-1706; d) J. M. Mejia
Oneto, I. Khan, L. Seebald, M. Royzen, ACS Cent. Sci. 2016, 2, 476-
482.
corresponding
conjugates
containing
tetracyclic
benzo[5,6][1,4]dithiino[2,3-b]quinoxaline were formed in excellent
yields in organic solvents, PBS buffer, cell medium, or cell lysate
together with release of the other functional molecules in direct or
indirect ways. The obtained conjugates are highly stable in the cell
medium (Figure S10) and show strong fluorescence. The built-in
fluorescence avoids active alteration of biomolecules for secondary
derivatization with a fluorophore, which is very useful for probe
development and screening. The CQ-DT bioorthogonal reactions
can be used as the bioorthogonal ligations, bioorthogonal cleavages
and the trans-tagging of proteins under physiological conditions. We
believe that the CQ-DT bioorthogonal reactions with multifunctions
of bioorthogonal ligations, cleavages and built-in fluorescence
should provide a new strategy for bioorthogonal chemistry and will
find a wide range of applications.
Acknowledgements
We are grateful for the assistance of Zi Yang on the protein
expression and purification in Protein Preparation and Identification
Facility at Technology Center for Protein Science of Tsinghua
University. This research was supported by the National Natural
Science Foundation of China (Grant No. 21772108).
[17] P. P. Geurink, B. I. Florea, N. Li, M. D. Witte, J. Verasdonck, C. L.
Kuo, G. A. van der Marel, H. S. Overkleeft, Angew. Chem. Int. Ed.
2010, 49, 6802-6805; Angew. Chem. 2010, 122, 6954-6957.
[18] S. H. Verhelst, M. Fonovic, M. Bogyo, Angew. Chem. Int. Ed. 2007,
46, 1284-1286; Angew. Chem. 2007, 119, 1306-1308.
[19] C. A. Gartner, J. E. Elias, C. E. Bakalarski, S. P. Gygi, J. Proteome Res.
2007, 6, 1482-1491.
Keywords: bioorthogonal ligations • bioorthogonal cleavages •
chloroquinoxalines • ortho-dithiophenols • protein modification
[20] a) K. Qin, Y. Zhu, W. Qin, J. Gao, X. Shao, Y.-l. Wang, W. Zhou, C.
Wang, X. Chen, ACS Chem. Biol. 2018, 13, 1983-1989; b) J.
Szychowski, A. Mahdavi, J. J. Hodas, J. D. Bagert, J. T. Ngo, P.
Landgraf, D. C. Dieterich, E. M. Schuman, D. A. Tirrell, J. Am. Chem.
Soc. 2010, 132, 18351-18360.
[1] a) R. D. Row, J. A. Prescher, Acc. Chem. Res. 2018, 51, 1073-1081; b)
E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974-
6998; Angew. Chem. 2009, 121, 7108-7133; c) O. Boutureira, G. J. L.
Bernardes, Chem. Rev. 2015, 115, 2174-2195; d) J. Li, P. R. Chen, Nat.
Chem. Biol. 2016, 12, 129-137; e) G. C. Rudolf, W. Heydenreuter, S.
A. Sieber, Curr. Opin. Chem. Biol. 2013, 17, 110-117.
[2] H. C. Hang, C. Yu, D. L. Kato, C. R. Bertozzi, Proc. Natl. Acad. Sci.
USA 2003, 100, 14846-14851.
[3] a) X. Fan, J. Li, P. R. Chen, Natl. Sci. Rev. 2017, 4, 300-302; b) D. M.
Patterson, J. A. Prescher, Curr. Opin. Chem. Biol. 2015, 28, 141-149;
c) C. P. Ramil, Q. Lin, Chem. Commun. 2013, 49, 11007-11022.
[21] S. Bernard, D. Audisio, M. Riomet, S. Bregant, A. Sallustrau, L.
Plougastel, E. Decuypere, S. Gabillet, R. A. Kumar, J. Elyian, M. N.
Trinh, O. Koniev, A. Wagner, S. Kolodych, F. Taran, Angew. Chem.
Int. Ed. 2017, 56, 15612-15616; Angew. Chem. 2017, 129, 15818-
15822
[22] A. B. Pierini, M. T. Baumgartner, R. A. Rossi, J. Org. Chem. 1987, 52,
1089-1092.
[23] J. Nafe, S. Herbert, F. Auras, K. Karaghiosoff, T. Bein, P. Knochel,
Chem. Eur. J. 2015, 21, 1102-1107.
[24] E. A. Hoyt, P. M. S. D. Cal, B. L. Oliveira, G. J. L. Bernardes, Nat. Rev.
Chem. 2019, 3, 147-171.
6
This article is protected by copyright. All rights reserved.