Journal of the American Chemical Society
Page 4 of 5
Scheme 7. [Me2NNF6]CuII-C6F5 (3Me) mediated homocou-
pling reactions.
(3) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P.
1
2
3
Tet. Lett. 1998, 39, 2933–2936. (b) Evans, D. A.; Katz, J. L.; West, T.
R. Tet. Lett. 1998, 39, 2937–2940. (c) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tet. Lett. 1998, 39, 2941–2944.
4
5
6
7
8
9
(4) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936–1947.
(5) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C.
Chem. Soc. Rev. 2010, 43, 3525–3550.
reductive elimination to give F5C6-C6F5 and [CuI] (Figures S65
and S66, Table S7) with a reductive elimination free energy barri-
er of ~ 2 kcal/mol. The [CuIII](C6F5)2 intermediate could not be
optimized without constraint of either the Cu-Caryl or Caryl-Caryl
bond lengths, consistent with facile ligand-induced C-C coupling
chemistry experimentally observed.
Transmetallation of copper(II) alkoxides or hydroxides [CuII]-
OR (R = alkyl, H) with the electron-deficient borane B(C6F5)3
provides entry into an unprecedented family of three coordinate
(6) (a) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S.;
Ribas, X. Chem. Sci. 2010, 1, 326–330. (b) King, A. E.; Huffman, L.
M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc.
2010, 132, 12068–12073. (c) King, A. E.; Brunold, T. C.; Stahl, S. S.
J. Am. Chem. Soc. 2009, 131, 5044–5045. (d) Ribas, X.; Calle, C.;
Poater, A.; Casitas, A.; Gómez, L.; Xifra, R.; Parella, T.; Benet-
Buchhoz, J.; Schweiger, A.; Mitrikas, G.; Sola, M.; Llobet, A.; Stack,
T. D. P. J. Am. Chem. Soc. 2010, 132, 12068–12073. (e) Qiao, J. X.;
Lam, P. Y. S. Synthesis 2011, 6, 829–856. (f) Huffman, L. M.; Stahl,
S. S. J. Am. Chem. Soc. 2008, 130, 9196–9197.
(7) (a) Zhang, H.; Yao, B.; Zhao, L.; Wang, D.; Xu, B.; Wang, M.
J. Am. Chem. Soc. 2014, 136, 6326–6332. (b) Maeda, H.; Ishikawa,
Y.; Matsuda, T.; Osuka, A.; Furuta, H. J. Am. Chem. Soc. 2003, 125,
11822–11823. (c) Furuta, H.; Ishizuka, T.; Osuka, A.; Uwatoko, Y.;
Ishikawa, Y. Angew. Chem. Int. Ed. 2001, 40, 2323–2325. (d) Furuta,
H.; Maeda, H.; Osuka, A. J. Am. Chem. Soc. 2000, 122, 803–807.
(8) (a) Adinarayana, B.; Thomas, A. P.; Suresh, C. H.; Srinivasan,
A. Angew. Chem. Int. Ed. 2015, 54, 10478–10482. (b) Yao, B.; Wang,
D.-X.; Huang, Z.-T.; Wang, M.-X. Chem. Commun. 2009, 2899–
2901. (c) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahìa, J.; Parella,
T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T. D. P.
Angew. Chem. Int. Ed. 2002, 41, 2991–2994.
(9) Ziegler, M. S.; Levine, D. S.; Lakshmi, K. V.; Tilley, T. D. J.
Am. Chem. Soc. 2016, 138, 6484–6491.
(10) (a) Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345–2347. (b)
Chan, D. M. T.; Lam, P. Y. S. In Boronic Acids; Hall, D. G., Ed.;
Wiley-VCH: Weinheim, 2005; pp 205-240.
(11) (a) Wiese, S.; Badiei, Y. M.; Gephart, R. T.; Mossin, S.; Va-
ronka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T.
H. Angew. Chem. Int. Ed. 2010, 49, 8850-8855. (b) Gephart, R. T. III;
Mcmullin, C. L.; Sapiezynski, N. G.; Jang, E. S.; Aguila, M. J. B.;
Cundari, T. R.; Warren, T. H. J. Am. Chem. Soc. 2012, 134, 17350-
17353. (c) Melzer, M. M.; Mossin, S.; Cardenas, A. J. P.; Williams,
K. D.; Zhang, S.; Meyer, K.; Warren, T. H. Inorg. Chem. 2012, 51,
8658-8660. (d) Salvador, T. K.; Arnett, C. H.; Kundu, S.; Sapiezyn-
ski, N. G.; Bertke, J. A.; Boroujeni, M. R.; Warren, T. H. J. Am.
Chem. Soc. 2016, 138, 16580-16583.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
copper(II) aryls [CuII]-C6F5. Facile reduction of [CuII]-C6F5 (3Me
)
to the copper(I) arylate complex {[CuI]-C6F5 (6) (E1/2 = -420 mV
vs. Fc+/Fc) enables redox disproportionation upon coordination of
the phenolate nucleophile to provide [CuIII](C6F5)(OPh) that
reductively eliminates PhO-C6F5, coupling the incoming
phenolate nucleophile with the bound Cu-aryl. These mechanistic
findings provide insight into the mechanism of C-O coupling in
the Chan-Lam-Evans coupling and support
a
redox
disproportionation pathway that involves CuI, CuII, and CuIII
organometallic intermediates.6 Ongoing studies probe the
reactivity of other nucleophiles Nu (e.g. amides, thiolates) with
these novel copper(II) aryls [CuII]-Ar for Nu-Ar coupling.
ASSOCIATED CONTENT
Supporting Information. Experimental, characterization, and compu-
tational details (PDF) and X-ray crystallographic data (CIF). This material
AUTHOR INFORMATION
Corresponding Authors
thw@georgetown.edu (T.H.W.); t@unt.edu (T.R.C)
ACKNOWLEDGMENT
T.H.W. acknowledges the National Science Foundation (NSF) for
support via grants CHE-1300774 and CHE-1337975 (X-ray).
T.R.C is grateful to the NSF for partial support of this research via
grant CHE-1464943; some of the calculations employed the UNT
Chemistry high-performance computing facility, supported by a
grant from the NSF (CHE-1531468). S.K. and T.H.W. thank the
Georgetown Environment Initiative for additional support. We are
grateful to Boulder Scientific Co. for a generous gift of B(C6F5)3.
(12) Hong, S.; Hill, L. M. R.; Gupta, A. K.; Naab, B. D.; Gilroy, J.
B.; Hicks, R. G.; Cramer, C. J.; Tolman, W. B. Inorg. Chem. 2009,
48, 4514-4523.
(13) Kolb, K. E. J. Chem. Educ. 1989, 66, 853–853.
(14) Collman, J.; Zhong, M. Org. Lett. 2000, 2, 1233–1236.
(15) Sakhaei, Z.; Kundu, S.; Donnelly, J. M.; Bertke, J. A.; Kim,
W. Y.; Warren, T. H. Chem. Commun. 2017, 53, 549-552.
(16) (a) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999,
121, 7270-7271. (b) Spencer, D. J. E.; Reynolds, A. M.; Holland, P.
L.; Jazdzewski, B. A.; Duboc-Toia, C.; Le Pape, L.; Yokota, S.;
Tachi, Y.; Itoh, S.; Tolman, W. B. Inorg. Chem. 2002, 41, 6307–
6321. (c) Jang, E. S.; McMullin, C. L.; Käβ, M.; Meyer, K.; Cundari,
T. R.; Warren, T. H. J. Am. Chem. Soc. 2014, 136, 10930–10940.
(17) Williams, K. D.; Cardenas, A. J. P.; Oliva, J. D.; Warren, T.
H. Eur. J. Inorg. Chem. 2013, 3812–3816.
REFERENCES
(1) (a) Ley, S. V; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42,
5400–5449. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem.
Rev. 2004, 248, 2337–2364. (c) Monnier, F.; Taillefer, M. Angew.
Chem. Int. Ed. 2009, 48, 6954–6971.
(2) (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384.
(b) Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38, 2211–
2212.
ACS Paragon Plus Environment