A. Kunai, J. Ohshita / Journal of Organometallic Chemistry 686 (2003) 3ꢁ
/
15
15
309 (2002) 247;
[50] H.H. Anderson, J. Am. Chem. Soc. 82 (1960) 1323; 81 (1959)
4785; 80 (1958) 5083.
(c) N. Wiberg, B. Neruda, Chem. Ber. 99 (1966) 740;
(d) M. Weidenbruch, K. Kramer, J. Organomet. Chem. 291
(1985) 159.
[51] P.B. Gansle, B.C. Gruber, J.T. Jarvis, A. Slaitas, S.D. Jesus, K.D.
Jesus, Microchem. J. 55 (1997) 222.
[26] (a) E.A. Flood, J. Am. Chem. Soc. 55 (1933) 1735;
(b) B.O. Pray, L.H. Sommer, G.M. Goldberg, G.T. Kerr, P.A.
DiGregio, F.C. Whitmore, J. Am. Chem. Soc. 70 (1948) 433;
(c) M. Kumada, M. Yamaguchi, Y. Yamamoto, J. Nakajima, K.
Siina, J. Org. Chem. 21 (1956) 1264.
[52] U. Herzog, G. Roewer, J. Organomet. Chem. 527 (1997) 117.
[53] A. Kunai, T. Ochi, A. Iwata, J. Ohshita, Chem. Lett. (2001) 1228.
[54] Nevertheless, diethyl ether can be used as the solvent for
bromination, unless the reaction requires longer reaction time.
The reaction in ether is faster than in benzene, and subsequent
work up is easy due to the low boiling point
[27] (a) N.S. Marans, L.H. Sommer, F.C. Whitmore, J. Am. Chem.
Soc. 73 (1951) 5127;
(b) C. Eaborn, J. Chem. Soc. (1952) 2846;
[55] (a) M. Kumada, K. Shiina, M. Yamaguchi, Kogyo Kagaku
Zasshi 57 (1954) 230;
(c) B.A. Bluestein, J. Am. Chem. Soc. 70 (1948) 3068;
(d) H.S. Booth, M.L. Freedman, J. Am. Chem. Soc. 72 (1950)
2847.
(b) H. Sakurai, A. Shirahata, K. Sakaki, A. Hosomi, Synthesis
(1979) 740;
(c) G.A. Olah, S.C. Narang, B.G.B. Gupta, R. Malhotra, Angew.
Chem. Int. Ed. Engl. 18 (1979) 612.
[28] (a) L.H. Sommer, G.R. Ansul, J. Am. Chem. Soc. 77 (1955) 2482;
(b) W.H. Knoth, R.V. Lindsay, J. Org. Chem. 23 (1958) 1392;
(c) L. Horner, J. Mathias, J. Organomet. Chem. 282 (1985) 155.
[29] H.S. Booth, J.F. Suttle, J. Am. Chem. Soc. 68 (1946) 2658.
[30] (a) A.E. Newkirk, J. Am. Chem. Soc. 68 (1946) 2736;
(b) E. Hengge, F. Schrank, J. Organomet. Chem. 299 (1986) 1.
[31] C.J. Wilkins, J. Chem. Soc. (1951) 2726.
[32] K. Tamao, J. Yoshida, H. Yamamoto, T. Kakui, H. Matsumoto,
M. Takahashi, A. Kurita, M. Murata, M. Kumada, Organome-
tallics 1 (1982) 355.
[56] D. Grafstein, J. Am. Chem. Soc. 77 (1955) 6650.
[57] M.E. Jung, T.A. Blumenkopf, Tetrahedron Lett. 39 (1978) 3657.
[58] (a) G.A. Olah, S.C. Narang, B.G.B. Gupta, R. Malhotra, J. Org.
Chem. 44 (1979) 1247;
(b) G.A. Olah, S.C. Narang, B.G.B. Gupta, R. Malhotra,
Synthesis (1979) 61;
(c) T. Morita, Y. Okamoto, H. Sakurai, Tetrahedron Lett. 28
(1978) 2523.
[59] (a) V.G. Fritz, D. Kummer, Z. Anorg. Allg. Chem. 304 (1960)
322;
[33] R. Damrauer, R.A. Simon, B. Kanner, Organometallics 7 (1988)
1161.
(b) V.G. Fritz, D. Kummer, Z. Anorg. Allg. Chem. 306 (1960)
191.
[34] O. Farooq, G.V.D. Tiers, J. Org. Chem. 59 (1994) 2122.
[35] H.W. Roesky, A. Herzog, K. Keller, Z. Naturforsch. B 49 (1994)
981.
[60] M.R. Detty, M.D. Seidler, J. Org. Chem. 46 (1981) 1283.
[61] H.H. Anderson, D.L. Seaton, R.P.T. Rudnicki, J. Am. Chem.
Soc. 73 (1951) 2144.
[36] H.H. Anderson, J. Am. Chem. Soc. 80 (1958) 5083.
[37] M.A. Finch, L.H. Marcus, C. Smirnoff, C.H. Van Dyke, N.
Viswanathan, Syn. Inorg. Met.-Org. Chem. (1971) 103.
[38] J.E. Bulkowsky, R. Stacy, C.H. Van Dyke, J. Organomet. Chem.
87 (1975) 137.
[62] Y.I. Khudbin, M.G. Voronkov, Metalloorg. Khim. 3 (1990) 898.
[63] (a) Y. Nagai, K. Yamazaki, I. Shiojima, N. Kobiri, M. Hayashi,
J. Organomet. Chem. 9 (1967) P21;
(b) Y. Nagai, H. Matsumoto, T. Yagihara, K. Morishita, Kogyo
Kagaku Zasshi 71 (1968) 1112.
[39] C.M. Hong, S.D. Witt, Y.N. Tang, J. Fluorine Chem. 23 (1983)
359.
[64] (a) A. Kunai, T. Sakurai, E. Toyoda, M. Ishikawa, Y. Yama-
moto, Organometallics 13 (1994) 3233;
[40] G.K.S. Prakash, Q. Wang, X. Li, G.A. Olah, New J. Chem. 14
(1990) 791.
(b) A. Iwata, Y. Toyoshima, T. Hayashida, T. Ochi, A. Kunai, J.
Ohshita, J. Organomet. Chem. 667 (2003) 90.
[65] J. Satge, Ann. Chim. 6 (1961) 519.
[41] J. Yoshida, H. Tsujishima, K. Nakano, T. Teramoto, K.
Nishiwaki, S. Isoe, Organometallics 14 (1995) 567.
[42] A. Kunai, T. Sakurai, E. Toyoda, M. Ishikawa, Organometallics
15 (1996) 2478.
[66] Y. Yamamoto, H. Shimizu, C. Matui, M. Chinda, Main Group
Chemistry 1 (1996) 409.
[43] (a) H.H. Anderson, J. Am. Chem. Soc. 73 (1951) 5804;
(b) M. Kumada, Kogyo Kagaku Zasshi 55 (1952) 373.
[44] (a) P.A. McCusker, E.L. Reilly, J. Am. Chem. Soc. 75 (1953)
1583;
[67] Y. Yamamoto, H. Shimizu, Y. Hamada, J. Organomet. Chem.
509 (1996) 119.
[68] Y. Yamamoto, C. Matui, Organometallics 16 (1997) 2204.
[69] J. Ohshita, A. Iwata, F. Kanetani, A. Kunai, Y. Yamamoto, C.
Matui, J. Org. Chem. 64 (1999) 8024.
(b) L.H. Sommer, H.D. Blankman, P.C. Millen, J. Am. Chem.
Soc. 73 (1951) 3542.
[70] (a) J. Ohshita, A. Iwata, H. Tang, Y. Yamamoto, C. Matui, A.
Kunai, Chem. Lett. (2001) 740;
[45] J.J. McBride, Jr., H.C. Beachell, J. Am. Chem. Soc. 74 (1952)
5247.
(b) A. Iwata, H. Tang, A. Kunai, J. Ohshita, Y. Yamamoto, C.
Matui, J. Org. Chem. 67 (2002) 5170.
[46] M. Kumada, K. Shiina, M. Yamaguchi, Kogyo Kagaku Zasshi 57
(1954) 230.
[47] U. Kruerke, Chem. Ber. 95 (1962) 174.
¨
[71] A. Iwata, J. Ohshita, H. Tang, A. Kunai, Y. Yamamoto, C.
Matui, J. Org. Chem. 67 (2002) 3927.
[48] W.H. Nebergall, J. Am. Chem. Soc. 72 (1950) 4702.
[49] (a) W. Steudel, H. Gilman, J. Am. Chem. Soc. 82 (1960) 6129;
(b) M.C. Harvey, W.H. Nebergall, J.S. Peak, J. Am. Chem. Soc.
79 (1957) 1437.
[72] M. Lalonde, T.H. Chan, Synthesis (1985) 815.
[73] M.E. Jung, W.A. Andrus, P.L. Ornstein, Tetrahedron Lett. (1977)
4175.
[74] R.D. Miller, D.R. McKean, Tetrahedron Lett. (1982) 323.