C O M M U N I C A T I O N S
Supporting Information Available: Detailed experimental pro-
Cl, 99.7% enriched). Installation of labeled nitrogen functionality
late in a route minimizes loss of this valuable material that would
otherwise be incurred by early-stage incorporation. As with all of
the tosyl-protected amine compounds, detosylation can be effected
under mild, reductive conditions without affecting the carbamate
moiety. Detosylation of 15N-labeled (+)-12 followed by cleavage
of the methoxy carbamate with NaOH afforded isotopically enriched
free amine product (+)-22 (99.7% enriched, Scheme 2).
1
cedures, full characterization, H and 13C NMR spectra. This material
References
(1) Kibayashi, C. Chem. Pharm. Bull. 2005, 53, 1375.
(2) (a) Mitsunobu, O. Synthesis 1981, 1. (b) Trost, B. M.; Van Vranken, D.
L. Chem. ReV. 1996, 96, 395. (c) Johannsen, M.; Jorgensen, K. A. Chem.
ReV. 1998, 98, 1689 and references therein. (d) Hayashi, T.; Kishi, K.;
Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743. (e) Ohmura,
T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164.
Scheme 3. Stoichiometric Studies To Evaluate the Role of
(salen)CrCl 2
(3) Streamlining syntheses via late-stage C-H oxidation, see: (a) Fraunhoffer,
K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223. (b) Covell,
D. J.; Vermeulen, N. A.; Labenz, N. A.; White, M. C. Angew. Chem.,
Int. Ed. 2006, 45, 8217. (c) Hoffman, R. W. Synthesis 2006, 21, 3531.
For examples of late stage C-H hydroxylation and amination, see: (d)
Chen, M. S.; White, M. C. Science 2007, 318, 783. (e) Wender, P. A.;
Hilinski, M. K.; Mayweg, A. V. W. Org. Lett. 2005, 7, 79. (f) Hinman,
A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510.
(4) (a) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
(b) The addition of 1 equiv of Bu4NOAc to the intramolecular C-H
amination significantly reduced yields, see ref 4a.
(5) Intramolecular C-H amination via nitrenes: (a) Espino, C. G.; Fiori, K.
W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378 and
references therein. (b) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem.
Soc. 2005, 127, 14198.
(6) Intermolecular C-H aminations via nitrenes: (a) Fiori, K. W.; Du Bois,
J. J. Am. Chem. Soc. 2007, 129, 562. (b) Liang, C.; Robert-Peillard, F.;
Fruit, C.; Muller, P.; Dodd, R. H.; Daubin, P. Angew. Chem., Int. Ed.
2006, 45, 4641. (c) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun.
2000, 531. (d) Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org.
Lett. 2000, 2, 2233. (e) Liang, C.; Collet, F.; Peillard, F. R.; Muller, P.;
Dodd, R. H.; Dauben, P. J. Am. Chem. Soc. 2007, 130, 343.
(7) Intermolecular allylic C-H aminations using excess olefin: (a) Kalita,
B.; Nicholas, K. M. Tetrahedron Lett. 2005, 46, 1451. (b) Aburel, P. S.;
Zhuang, W.; Hazell, R. G.; Jorgensen, K. A. Org. Biomol. Chem. 2005,
3, 2344.
(8) Rogers, M. M.; Kotov, V.; Chatwichien, J.; Stahl, S. S. Org. Lett. 2007,
9, 4331, and references therein.
(9) Trost, B. M.; Keinan, E. J. Org. Chem. 1979, 44, 3451.
(10) For examples of cooperative heterobimetallic catalysis see: (a) Kamijo,
S.; Yamamoto, Y. In Multimetallic Catalysts in Organic Synthesis;
Shibasaki, M., Yamamoto, Y., Eds.; Wiley-VCH: New York, 2004;
Chapter 1. For examples from asymmetric catalysis see: (b) Sawamura,
M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309. (c) Sammis,
G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928.
(11) Covell, D. J.; White, M. C. Manuscript in preparation.
Stoichiometric studies were performed to evaluate the roles of
Pd(II)/bis-sulfoxide catalyst 1 and Cr(III)(salen) catalyst 2 in the
intermolecular allylic C-H amination reaction. When a stoichio-
metric mixture of 1-decene, catalyst 1, and 2 equiv of N-
(methoxycarbonyl)-p-toluenesulfonamide nucleophile were heated
for 4 h, a π-allylPd complex was trapped as the corresponding
chloride dimer 23, which was isolated in 66% yield (Scheme 3).
We next evaluated the effect of chromium catalyst 2 on synthetic
π-allylPd complex 24 under mock catalytic conditions. We found
that the combination of Cr catalyst 2 with BQ was uniquely effective
at promoting formation of aminated product 7 in 25% yield with
regio- and stereoselectivities similar to those observed under
standard catalytic conditions (Scheme 3; Table 2, entry 3).20
Consistent with 2/BQ working together to promote functionaliza-
tion, sterically hindered quinones such as 2,6-dimethyl quinone
result in significantly diminished yields (10%, see Supporting
Information, [SI]) under otherwise standard catalytic conditions.
These results suggest that Pd catalyst 1 mediates allylic C-H
cleavage, while Cr catalyst 2 and BQ promote functionalization.
The exact mechanism by which 2/BQ promote functionalization is
currently under investigation.21
(12) Commercial (1S,2S)-(+)-[1,2-cyclohexanediamino-N,N′-bis(3,5-di-tert-
butylsalicylidene)]Cr(III)Cl was used.
(13) Increasing 2 loadings gave an increased rate of conversion but a decrease
in product yields (SI). Gas chromatograph (GC) peaks consistent with
olefin isomerization were observed with higher loadings of 2.
(14) Branched regioselectivity with 1: (a) Chen, M. S.; Prabagaran, N.; Labenz,
N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (b) Fraunhoffer,
K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006,
128, 9032. (c) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006,
128, 15076. (d) Reference 4a.
In summary, we report the first general and highly selective,
catalytic intermolecular allylic C-H amination reaction. The
excellent levels of regio- and stereoselectivity as well as the
outstanding functional group compatibility make this reaction
immediately applicable to complex molecule synthesis. Mechanistic
studies support a heterobimetallic Pd(II)-Cr(III) catalytic system
in which each metal effects different product-forming steps in the
catalytic cycle. Given the excellent selectivities and broad scope
of the linear allylic C-H amination, we anticipate that it, and other
reactions like it, will significantly enable the streamlining of small
molecule synthesis.
(15) Conn, C.; Shimmon, R.; Cordaro, F.; Hargraves, T. L.; Ibrahim, P. Bioorg.
Med. Chem. Lett. 2001, 11, 2565.
(16) (a) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401. (b) Kubota,
K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946. (c) Cogan, D.
A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883. (d) Evans, D. A.;
Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737. (e) Myers,
A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason,
J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(17) Reginato, G.; Gaggini, F.; Mordini, A.; Valacchi, M. Tetrahedron 2005,
61, 6791.
(18) Norrild, J. C.; Pedersen, C.; Sotofte, I. Carbohydr. Res. 1997, 297, 261.
(19) Raju, B.; Anandan, S.; Gu, S.; Herradura, P.; O’Dowd, H.; Kim, B.;
Gomez, M.; Hackbarth, C.; Wu, C.; Wang, W.; Yuan, Z.; White, R.; Trias,
J.; Patel, D. V. Bioorg. Med. Chem. Lett. 2004, 14, 3103.
(20) Allylic acetates were the other major product observed (see SI). This is
consistent with the catalytic reaction where allylic acetates are the major
byproduct. When allylic acetates are exposed to the reaction conditions,
only trace (∼6%) allylic carbamate is formed with different regio- and
stereoselectivities than those observed under catalytic conditions (SI).
(21) Cr(salen) may bind to and enhance the π-acidity of the BQ, thereby
activating the π-allylPd species towards functionalization. Cr(salen) has
been demonstrated to activate BQ towards Diels-Alder reactions: Jarvo,
E. R.; Lawrence, B. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005,
44, 6043. Cr(salen) may deliver the carbamate nucleophile while BQ
activates the π-allylPd towards functionalization. Cr(salen) has been shown
to activate azide nucleophiles: Hansen, K. B.; Leighton, J. L.; Jacobsen,
E. N. J. Am. Chem. Soc. 1996, 118, 10924. For BQ acting as a π-acidic
ligand to promote functionalization of π-allylPd with acetate in an allylic
C-H oxidation reaction, see ref 14a.
Acknowledgment. This paper is dedicated to Professor Peter
Beak for his mentorship and encouragement to “look at nitrogen”.
M.C.W. thanks the A.P. Sloan Foundation, Merck Research
Laboratories, and the NIH/NIGMS (GM076153) for financial
support. M.C.W. is the recipient of a Lilly Grantee Award, the
Bristol-Myers Squibb “Freedom to Discover” Grant, and the Pfizer
Award for Creativity in Organic Chemistry. S.A.R. is a recipient
of the R.C. Fuson graduate fellowship. We thank Aldrich Chemical
Co. for a generous gift of commercial bis-sulfoxide/Pd(OAc)2
catalyst 1. We thank Mr. Erik Stang for checking the experimental
procedure in Table 1, entry 7.
JA710206U
9
3318 J. AM. CHEM. SOC. VOL. 130, NO. 11, 2008