Chemical Science
Edge Article
manifold, as the rate of undesired reaction between 1 and H2O 25 S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue and
is slowed, and the water-soluble triple salt, Oxone, can be R. G. Wilde, J. Org. Chem., 1995, 60, 1391.
employed as the terminal oxidant. This disclosure is one of a 26 D. Yang, Acc. Chem. Res., 2004, 37, 497.
very small number of examples of catalytic C–H oxidation 27 S. E. Denmark, Z. Wu and C. M. Crudden, J. Org. Chem.,
processes that uses peroxysulfate.48 Under these conditions and
1997, 62, 8288.
in comparison to our earlier protocols, demonstrable 28 S. E. Denmark and H. Matsuhashi, J. Org. Chem., 2002, 67,
improvements in reaction times, substrate scope, and product 3479.
yields have been realized. The impressive selectivity displayed 29 B. H. Brodsky and J. Du Bois, J. Am. Chem. Soc., 2005, 127,
by oxaziridine 1 for oxidation of ne chemicals motivates future 15391.
studies aimed at understanding the details of its reaction with 30 N. D. Litvinas, B. H. Brodsky and J. Du Bois, Angew. Chem.,
H2O and further advancing this technology. It should be noted Int. Ed. Engl., 2009, 48, 4513.
that, currently, benzoxathiazine heterocycles such as 2 remain 31 Our earlier work utilized a 1 : 1 AcOH–H2O solvent mixture
the only non-metal-based catalysts capable of promoting O-
atom insertion into C–H bonds.
and was performed at 50 ꢀC for 96 h to afford modest
yields of 3ꢀ alcohol products. Benzylic C–H bond oxidation
was not possible under these conditions.
32 The half-life for dimethyldioxirane in aqueous solutions is
less than that in organic solvent, see: J. Bouchard,
C. Maine, R. M. Berry and D. S. Argyropoulos, Can. J.
Chem., 1996, 74, 232.
33 D. Hong, M. Hoshino, R. Kuboi and Y. Goto, J. Am. Chem.
Soc., 1999, 121, 8427.
Acknowledgements
This work has been supported by the National Science Foun-
dation under the CCI Center for Selective C–H Functionaliza-
tion, CHE-1205646.
34 B. Czarnik-Matusewicz, S. Pilorz, L.-P. Zhang and Y. Wu, J.
Mol. Struct., 2008, 883, 195.
Notes and references
35 K. Yoshida, S. Daigoku, et al., J. Chem. Phys., 2003, 119, 6132.
36 S. Kuprin, A. Graslund and A. Ehrenberg, Biochem. Biophys.
Res. Commun., 1995, 217, 1151.
1 T. Newhouse and P. B. Baran, Angew. Chem., Int. Ed., 2011,
50, 3362.
2 M. C. White, Science, 2012, 335, 807.
37 Y. Mizutani, et al., J. Phys. Chem., 1991, 95, 1790.
3 M. Costas, K. Chen and L. Que, Coord. Chem. Rev., 2000, 200,
517.
´
´
38 J.-P. Begue, D. Bonnet-Delpon and B. Crousse, Synlett, 2004,
18.
4 E. McNeill and J. Du Bois, Chem. Sci., 2012, 3, 1810.
5 E. McNeill and J. Du Bois, J. Am. Chem. Soc., 2010, 132, 10202.
6 M. S. Chen and M. C. White, Science, 2007, 318, 783.
7 M. S. Chen and M. C. White, Science, 2010, 327, 566.
8 M. A. Bigi, S. A. Reed and M. C. White, J. Am. Chem. Soc.,
2012, 134, 9721.
9 D. Wang, et al., Chem. Sci., 2013, 4, 282.
10 Y. Hitomi, K. Arakawa, T. Funabiki and M. Kodera, Angew.
Chem., Int. Ed. Engl., 2012, 51, 3448.
39 The ratio of 9 : 1 H2O–HFIP was optimized by examining the
stoichiometric oxidation of substrate 3 with oxaziridine 1.
Increasing the percentage of H2O accelerated formation of
the desired 3ꢀ alcohol product.
40 F. A. Davis, S. Chattopadhyay, J. C. Towson, S. Lal and
T. Reddy, J. Org. Chem., 1988, 53, 2087.
41 For the rst disclosure of a catalytic oxidation (sulde to
sulfoxide) mediated by an oxaziridine oxidant, see:
F. A. Davis, S. G. Lal and H. D. Durst, J. Org. Chem., 1988,
53, 5004.
11 I. Prat, et al., Nat. Chem., 2011, 3, 788.
´
12 L. Gomez, et al., Angew. Chem., Int. Ed. Engl., 2009, 48, 5720.
42 R. Mello, L. Cassidei and M. Fiorentino, J. Am. Chem. Soc.,
1991, 113, 2205.
43 A. L. Baumstark, F. Kovac and P. C. Vasquez, Can. J. Chem.,
1999, 77, 308.
44 Reactions with electron neutral or electron rich arenes yield
a mixture of products, presumed to result from oxidation of
the aromatic ring. Similar results are obtained with
dioxiranes, see: A. Altamura, et al., Tetrahedron Lett., 1991,
32, 5445.
13 S. Lee and P. L. Fuchs, J. Am. Chem. Soc., 2012, 124, 13978.
14 N. C. Deno, et al., Tetrahedron, 1977, 33, 2503.
15 C. Yuan, et al., Nature, 2013, 499, 192.
16 R. Curci and L. D’Accolti, Acc. Chem. Res., 2006, 39, 1.
17 L. Zou, et al., J. Org. Chem., 2013, 78, 4037.
18 K. Chen and P. S. Baran, Nature, 2009, 459, 824.
19 C. Annese, et al., J. Org. Chem., 2010, 75, 4812.
20 P. A. Wender, M. K. Hilinski and A. V. W. Mayweg, Org. Lett.,
2002, 7, 79.
45 E. Mincione, T. Prencipe and R. Curci, J. Org. Chem., 1992,
57, 2182.
21 D. D. DesMarteau, A. Donadelli, V. Montanari, V. A. Petrov
and G. Resnati, J. Am. Chem. Soc., 1993, 115, 4897.
22 D. D. DesMarteau, V. A. Petrov, V. Montanari, M. Pregnolato
and G. Resnati, J. Fluorine Chem., 1992, 58, 339.
23 H. Mikula, et al., Org. Process Res. Dev., 2013, 17, 313.
24 J. O. Edwards, R. H. Pater, R. Curci and F. D. Furia,
Photochem. Photobiol., 1979, 30, 63.
´
˜
´
46 M. E. Gonzalez-Nunez, R. Mello, A. Olmos and G. Asensio, J.
Org. Chem., 2005, 70, 10879.
47 R. J. Kennedy and A. M. Stock, J. Org. Chem., 1960, 25, 1901.
48 B. De Poorter, M. Ricci and B. Meunier, Tetrahedron Lett.,
1985, 26, 4459.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2014