J. Am. Chem. Soc. 1996, 118, 12473-12474
12473
Scheme 1
Novel Construction of Highly-Substituted
Xanthones
Lijun Sun and Lanny S. Liebeskind*
Sanford S. Atwood Chemistry Center, Emory UniVersity
1515 Pierce DriVe, Atlanta, Georgia 30322
ReceiVed August 19, 1996
The xanthone core 1 is present in a large family of natural
products with broad biological activities.1-4 Many polyoxy-
genated, naturally-occurring xanthones possess intriguing bio-
logical properties, a factor that has led to interest in the
development of new synthetic methodologies for construction
of the ring system and to the total synthesis of various xanthone-
based natural products.5-25
Deconstruction of the highly-substituted xanthone core reveals
a concise synthetic strategy that generates the key dithiane-
protected benzopyrone-fused cyclobutenedione 5 by fusing a
dianion derived from the salicylaldehyde 2, protected as the
dithiane 3, to a squaric acid derivative 4 (Scheme 1). Reaction
of 5 with alkenyl, aromatic, and heteroaromatic lithiates should
provide, after thermolysis and hydrolysis, the highly-oxygenated
xanthones 1 following well-established cyclobutenedione-based
technology.26-31
Table 1. Synthesis of Dithiane-Protected Benzopyrone-Fused
Cyclobutenediones 5
The synthesis of five dithiane-protected benzopyrone-fused
cyclobutenediones is depicted in Table 1. A variety of 2-(o-
hydroxyphenyl)-1,3-dithianes 3 was prepared, each in high yield
from the corresponding salicylaldehyde under standard condi-
tions.32,33 Each of the dithianes 3 was dissolved in THF and
entry
R1
R2
R3
cmpd, %
4
6, %
5, %
1
2
3
4
5
H
H
H
H
Cl
H
MeO
H
3a, 95
3b, 90
3c, 95
3d, 98
3e, 91
4a 6a, 87 5a, 82
4a 6b, 94 5b, 76
4b 6c, 89 5c, 80
4b 6d, 77 5d, 79
4b 6e, 86 5e, 46
H
H
H
MeO
H
MeO MeO
(1) Bennett, G. J.; Lee, H.-H. Phytochemistry 1989, 28, 967.
(2) Afzal, M.; Al-Hassan, J. M. Heterocycles 1980, 14, 1173.
(3) Sultanbawa, M. U. S. Tetrahedron 1980, 36, 1465.
(4) Roberts, J. C. Chem. ReV. 1961, 61, 591.
(5) Asano, J.; Chiba, K.; Tada, M.; Yoshii, T. Phytochemistry 1996, 41,
815.
(6) Fernandes, E. R.; Carvalho, F. D.; Remia˜o, F. G.; Bastos, M. L.;
Pinto, M. M.; Gottlieb, O. R. Pharm. Res. 1995, 12, 1756.
(7) Lin, C.-N.; Liou, S.-S.; Lai, S.-C.; Lin, H.-C.; Ko, F.-N.; Liu, H.-
W.; Teng, C.-M. J. Pharm. Pharmacol. 1995, 47, 588.
(8) Sakai, S.-i.; Katsura, M.; Takayama, H.; Aimi, N.; Chokethaworn,
N.; Suttajit, M. Chem. Pharm. Bull. 1993, 41, 958.
(9) Chang, C.-C.; Lin, C.-N.; Lin, J.-Y. AntiViral Res. 1992, 19, 119.
(10) Liou, S.-S.; Shieh, W.-L.; Cheng, T.-H.; Won, S.-J.; Lin, C.-N. J.
Pharm. Pharmacol. 1993, 45, 791.
(11) Rao, A. V. R.; Yadav, J. S.; Reddy, K. K.; Upender, V. Tetrahedron
Lett. 1991, 32, 5199.
(12) Parker, K.; Ruder, S. M. J. Am. Chem. Soc. 1989, 111, 5948.
(13) Kelly, T. R.; Jagoe, C. T.; Li, Q. J. Am. Chem. Soc. 1989, 111,
4522.
(14) Mehta, G.; Shah, S. R. Tetrahedron Lett. 1991, 32, 5195.
(15) Mehta, G.; Venkateswarlu, Y. J. Chem. Soc., Chem. Commun. 1988,
1200.
(16) Rao, A. V. R.; Reddy, K. K.; Yadav, J. S.; Singh, A. K. Tetrahedron
Lett. 1988, 29, 3991.
(17) Omura, S.; Nakagawa, A.; Kushida, K.; Lukacs, G. J. Am. Chem.
Soc. 1986, 108, 6088.
(18) Omura, S.; Iwai, Y.; Hinotozawa, K.; Takahashi, Y.; Kato, J.;
Nakagawa, A.; Hirano, A.; Shimizu, H.; Haneda, K. J. Antibiot. 1982, 35,
645.
(19) Bekaert, A.; Andrieux, J.; Plat, M. Tetrahedron Lett. 1992, 33, 2805.
(20) Bergeron, D.; Brassard, P. Heterocycles 1992, 34, 1835.
(21) Letcher, R. M.; Yue, T. Y. J. Chem. Soc., Chem. Commun. 1992,
1310.
(22) Hauser, F. M.; Hewawasam, P.; Baghadanov, V. M. J. Org. Chem.
1988, 53, 223.
(23) Kjaer, D.; Kjaer, A.; Risbierg, E. J. Chem. Soc., Perkin Trans. 1
1983, 2815.
treated with 2.2 equiv of t-BuLi in pentane at -78 °C, and the
resulting solution was warmed to 0 °C to generate a slurry of
the corresponding O-, C-dianion. Reaction of the dianions with
the dialkyl squarates (4) took place at 0 °C to afford the 1,2-
adducts 6 in excellent yield in all cases.
The choice of squarate ester 4 was dictated by the ability to
promote the transformation of 6 into 5 using p-toluenesulfonic
acid monohydrate (pTSA) in CH2Cl2 at room temperature (6a,
10 mol % of pTSA for 72 h; 6b, 20 mol % of pTSA for 12 h
and then an additional 10 mol % of pTSA for 12 h). Notably,
the purification of 5a,b was achieved by simple trituration in
ether and hexanes, thus avoiding a tedious chromatography.
Under a variety of conditions, the adducts derived from
diisopropyl squarate and the methoxylated phenyldithianes (3c-
e) did not efficiently transform into the corresponding ring-
fused cyclobutenediones 5. To overcome this limitation adducts
6c-e derived from dimethyl squarate, although not stable
enough for complete characterization (their structures were
1
confirmed by H NMR spectra, alone), were obtained in good
yields and did undergo the desired acid-promoted reaction to
provide 5c-e in moderate to very good yields (Table 1, entries
3-5). It is noteworthy that these reactions can be conducted
on a large scale. Thus, without chromatography, 7.5 g of
diisopropyl squarate 4a and 7.3 g of dithiane 3a gave 13.5 g of
adduct 6a (87%), of which 7.0 g in turn was transformed into
4.1 g (82%) of cyclobutenedione 5a, again without chromatog-
raphy.
(24) Barton, D. H. R.; Cottire, L.; Freund, K.; Luini, F.; Magnus, P. D.;
Salazar, I. J. Chem. Soc., Perkin Trans. 1 1976, 499.
(25) Kato, T.; Katagiri, N.; Nakano, J.; Kawamura, H. J. Chem. Soc.,
Perkin Trans. 1 1981, 2710.
(26) Turnbull, P.; Moore, H. W. J. Org. Chem. 1995, 60, 3274.
(27) Koo, S.; Liebeskind, L. S. J. Am. Chem. Soc. 1995, 117, 3389.
(28) Gurski-Birchler, A.; Liu, F.; Liebeskind, L. S. J. Org. Chem. 1994,
59, 7737.
Efficient nucleophilic addition of different alkenyl (styrene,
dihydropyran), aryl (benzene, substituted benzenes, naphtha-
lenes), and heteroaryl (furan, thiophene, pyrrole, indole) lithiates
(32) Page, P. C. B.; van Niel, M. B.; Prodger, J. Tetrahedron 1989, 45,
(29) Liebeskind, L. S.; Wang, J. Y. J. Org. Chem. 1993, 58, 3550.
(30) Moore, H. W.; Yerxa, B. R. Chemtracts: Org. Chem. 1992, 5, 273.
(31) Liebeskind, L. S. Tetrahedron (Symposia in Print) 1989, 45, 3053.
7643.
(33) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4,
1075.
S0002-7863(96)02920-4 CCC: $12.00 © 1996 American Chemical Society