Dallinger et al.
JOCArticle
out of nearly microwave transparent materials such as
borosilicate glass, quartz, or Teflon, the radiation passes
through the walls of the vessel and the temperature at the
inner surface of the reactor wall will (initially) be lower than
that of the bulk liquid. The elimination of a hot vessel surface
has often been stated as being one of the key advantages of
using microwave technology in synthetic organic chemistry,1
in particular in transition metal-catalyzed transformations
where temperature sensitive catalysts can undergo decom-
position on hot reactor surfaces (wall effects).2 It has been
argued that the elimination of such a hot surface by in-core
volumetric heating can increase the lifetime of the catalyst
and therefore may lead to better conversions in a microwave
heated as compared to a conductively heated process.1,2
In this paper we present a detailed investigation on the
putative role and existence of wall effects in convention-
ally and microwave heated ring-closing metathesis trans-
formations.3 Ring-closing metathesis chemistry was cho-
sen as a suitable model system for several reasons. First
of all, it is well-known that many of the classical transi-
tion metal-based catalytic systems used today to perform
olefin metathesis chemistry are thermally unstable and
will degrade over time, especially when heated to higher
temperatures.3,4 Second, the use of microwave dielectric
heating to perform a range of transition metal-catalyzed
metathesis protocols,5 including ring-closing metathesis
(RCM),6-12 cross-metathesis (CM),13,14 ring-opening meta-
thesis polymerization (ROMP),15 and several types of alkyne
metathesis reactions16,17 is well documented. In virtually all of
these published examples, the use of microwave irradiation has
led to significant improvements in terms of reaction rates and/or
product yields and purities, compared to conventionally pro-
cessed reactions, in particular for otherwise difficult to perform
metathesis protocols.5-17 In addition, the use of microwave
heating has often allowed a significant reduction in catalyst
loading, and therefore an increase in catalyst turnover
numbers.5-17 As a scientific rationale for the observed effects
an increased catalyst lifetime by elimination of wall effects due
to direct in-core microwave heating was proposed in several
publications.5,7,14,17
The studies presented herein describe a series of carefully
executed experiments involving difficult to perform Ru-
catalyzed olefin ring-closing metathesis transformations for
the construction of eight-membered-ring systems. In addi-
tion, the putative role of wall effects and involvement of
nonthermal microwave effects in Ni- and Co-catalyzed
[2þ2þ2] cyclotrimerization reactions was also evaluated.18
(8) Nosse, B.; Schall, A.; Jeong, W. B.; Reiser, O. Adv. Synth. Catal. 2005,
347, 1869.
(9) Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C. O. J. Org. Chem.
2003, 68, 9136.
(2) For general reviews on microwave-assisted transition metal catalysis,
see: (a) Appukkattan, P.; Van der Eycken, E. Eur. J. Org. Chem. 2008, 1133.
(b) Nilsson, P.; Olofsson, K.; Larhed, M. Top. Curr. Chem. 2006, 266, 103.
(c) Leadbeater, N. E. Chem. Commun. 2005, 2881. (d) Larhed, M.; Moberg,
C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717.
(3) For a general review of metathesis reactions and their applications,
see: Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim,
Germany, 2003; Vols. 1-3.
(4) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K. Chem.;Eur.
J. 2008, 14, 806.
(5) For reviews on microwave-assisted metathesis chemistry, see: (a) Coquerel,
Y.; Rodriguez, J. Eur. J. Org. Chem. 2008, 1125. (b) Nicks, F.; Borguet, Y.;
Delfosse, S.; Bicchielli, D.; Delaude, L.; Sauvage, X.; Demonceau, A. Aust. J.
Chem. 2009, 62, 184.
(6) (a) Deck, J. A.; Martin, S. F. Org. Lett. 2010, 12, 2610. (b) Abell,
A. D.; Alexander, N. A.; Aitken, S. G.; Chen, H.; Coxon, J. M.; Jones, M. A.;
McNabb, S. B.; Muscroft-Taylor, A. J. Org. Chem. 2009, 74, 4354.
(c) Illesinghe, J.; Guo, C. X.; Garland, R.; Ahmed, A.; van Lierop, B. J.;
Elaridi, J.; Jackson, W. R.; Robinson, A. J. Chem. Commun. 2009, 295.
(d) Robinson, A. J.; van Lierop, B. J.; Garland, R. D.; Teoh, E.; Elaridi, J.;
Illesinghe, J.; Jackson, W. R. Chem. Commun. 2009, 4293. (e) Terracciano, S.;
Bruno, I.; D’Amico, E.; Bifulco, G.; Zampella, A.; Sepe, V.; Smith, C. D.;
Riccio, R. Bioorg. Med. Chem. 2008, 16, 6580. (f) Lamberto, M.; Kilburn,
(10) Comer, E.; Organ, M. G. J. Am. Chem. Soc. 2005, 127, 8160.
(11) Chapman, R. N.; Arora, P. S. Org. Lett. 2006, 8, 5825.
(12) (a) Thanh, G. V.; Loupy, A. Tetrahedron Lett. 2003, 44, 9091.
(b) Mayo, K. G.; Nearhof, E. H.; Kiddle, J. J. Org. Lett. 2002, 4, 1567.
(13) (a) Cros, F.; Pelotier, B.; Piva, O. Synthesis 2010, 233. (b) Marinec,
P. S.; Evans, C. G.; Gibbons, G. S.; Tarnowski, M. A.; Overbeek, D. L.;
Gestwicki, J. E. Bioorg. Med. Chem. 2009, 17, 5763. (c) Boddaert, T.;
Coquerel, Y.; Rodriguez, J. Adv. Synth. Catal. 2009, 351, 1744. (d) Edelsz-
tein, V. C.; Di Chenna, P. H.; Burton, G. Tetrahedron 2009, 65, 3613.
(e) Fields, W. H.; Khan, A. K.; Sabat, M.; Chruma, J. J. Org. Lett. 2008,
10, 5131. (f) Kirschning, A.; Harmrolfs, K.; Mennecke, K.; Messinger, J.;
€
Schon, U.; Grela, K. Tetrahedron Lett. 2008, 49, 3019. (g) Gebauer, J.;
Arseniyadis, S.; Cossy, J. Eur. J. Org. Chem. 2008, 2701. (h) Lumini, M.;
Cordero, F. M.; Pisaneschi, F.; Brandi, A. Eur. J. Org. Chem. 2008, 2817.
(i) Brouwer, A. J.; Elgersma, R. C.; Jagodzinska, M.; Rijkers, D. T. S.;
Liskamp, R. M. J. Bioorg. Med. Chem. Lett. 2008, 18, 78. (j) Hayashi, Y.;
Regnier, T.; Nishiguchi, S.; Sydnes, M. O.; Hashimoto, D.; Hasegawa, J.;
Katoh, T.; Kajimoto, T.; Shiozuka, M.; Matsuda, R.; Node, M.; Kiso, Y.
Chem. Commun. 2008, 2379. (k) Morris, T.; Sandham, D.; Caddick, S. Org.
Biomol. Chem. 2007, 5, 1025. (l) Artman, G. D.; Grubbs, A. W.; Williams,
ꢀ
R. M. J. Am. Chem. Soc. 2007, 129, 6336. (m) Fustero, S.; Jimenez, D.;
ꢀ
ꢀ
Sanchez-Rosello, M.; del Pozo, C. J. Am. Chem. Soc. 2007, 129, 6700.
(n) Lombardo, M.; Capdevila, M. G.; Pasi, F.; Trombini, C. Org. Lett.
2006, 8, 3303. (o) Goldup, S. M.; Pilkington, C. J.; White, A. J. P.; Burton, A.;
Barrett, A. G. M. J. Org. Chem. 2006, 71, 6185. (p) Elaridi, J.; Patel, J.;
Jackson, W. R.; Robinson, A. J. J. Org. Chem. 2006, 71, 7538. (q) Bargiggia,
F. C.; Murray, W. V. J. Org. Chem. 2005, 70, 9636. (r) Poulsen, S.-A.;
Bornaghi, L. F. Tetrahedron Lett. 2005, 46, 7389. (s) Aitken, S. G.; Abell,
A. D. Aust. J. Chem. 2005, 58, 3. (t) Colombeau, L.; Zerrouki, R.; Krausz, P.;
Champavier, Y. Lett. Org. Chem. 2005, 2, 613.
ꢀ
J. D. Tetrahedron Lett. 2008, 49, 6364. (g) Benakki, H.; Colacino, E.; Andre,
C.; Guenoun, F.; Martinez, J.; Lamaty, F. Tetrahedron 2008, 64, 5949.
(h) Robinson, A.; Elaridi, J.; van Lierop, B. J.; Mujcinovic, S.; Jackson,
W. R. J. Pept. Sci. 2007, 13, 280. (i) Jam, F.; Tullberg, M.; Luthman, K.;
Grøtli, M. Tetrahedron 2007, 63, 9881. (j) Appukkuttan, P.; Dehaen, W.; Van
ꢀ
der Eycken, E. Chem.;Eur. J. 2007, 13, 6452. (k) Perez-Balado, C.;
Nebbioso, A.; Rodriguez-Grana, P.; Minichiello, A.; Miceli, M.; Altucci,
~
L.; de Lera, A. R. J. Med. Chem. 2007, 50, 2497. (l) Wilson, L. J.; Yang, C.;
Murray, W. V. J. Org. Chem. 2007, 48, 7399. (m) Lesma, G.; Colombo, A.;
Landoni, N.; Sacchetti, A.; Silvani, A. Tetrahedron: Asymmetry 2007, 18, 1948.
(n) Miyagi, T.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2007, 71, 1592.
(o) Vu, N. Q.; Chai, C. L. L.; Lim, K. P.; Chia, S. C.; Chen, A. Tetrahedron
2007, 63, 7053. (p) Yang, Q.; Li, X.-Y.; Wu, H.; Xiao, W.-J. Tetrahedron Lett.
(14) Michaut, A.; Boddaert, T.; Cocquerel, Y.; Rodriguez, J. Synthesis
2007, 2867.
(15) (a) Spring, A. M.; Yu, C.-Y.; Horie, M.; Turner, M. L. Chem.
Commun. 2009, 2676. (b) Diesendruck, C. E.; Vidavsky, Y.; Ben-Asuly, A.;
Lemcoff, N. G. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4209.
(16) (a) Graham, T. J. A.; Gray, E. E.; Burgess, J. M.; Goess, B. C. J. Org.
Chem. 2010, 75, 226. (b) Castagnolo, D.; Botta, L.; Botta, M. J. Org. Chem.
2009, 74, 3172. (c) Debleds, O.; Campagne, J.-M. J. Am. Chem. Soc. 2008,
130, 1562. (d) Spandl, R. J.; Rudyk, H.; Spring, D. R. Chem. Commun. 2008,
3001. (e) Salim, S. S.; Bellingham, R. K.; Brown, R. C. D. Eur. J. Org. Chem.
€
2004, 800. (f) Furstner, A.; Stelzer, F.; Rumbo, A.; Krause, H. Chem.;Eur.
J. 2002, 8, 1856.
(17) (a) Efskind, J.; Undheim, K. Tetrahedron Lett. 2003, 44, 2837.
(b) Castagnolo, D.; Renzulli, M. L.; Galletti, E.; Corelli, F.; Botta, M.
Tetrahedron: Asymmetry 2005, 16, 2893.
^ ꢀ
2006, 47, 3893. (q) Collins, S. K.; Grandbois, A.; Vachon, M. P.; Cote, J.
Angew. Chem., Int. Ed. 2006, 45, 2923. (r) Appukkuttan, P.; Dehaen, W.; Van
ꢁ
der Eycken, E. Org. Lett. 2005, 7, 2723. (s) Declerck, V.; Ribiere, P.;
Martinez, J.; Lamaty, F. J. Org. Chem. 2004, 69, 8372. (t) Balan, D.;
Adolfsson, H. Tetrahedron Lett. 2004, 45, 3089. (u) Miles, S. M.; Leather-
barrow, R. J.; Marsden, S. P.; Coates, W. J. Org. Biomol. Chem. 2004, 2, 281.
(v) Varray, S.; Gauzy, C.; Lamaty, F.; Lazaro, R.; Martinez, J. Tetrahedron
Lett. 2003, 44, 9091. (w) Grigg, R.; Martin, W.; Morris, J.; Sridharan, V.
Tetrahedron Lett. 2003, 44, 4899. (x) Organ, M. G.; Mayer, S.; Lepifre, F.;
N0Zemba, B.; Khatri, J. Mol. Diversity 2003, 7, 211. (y) Varray, S.; Gauzy, C.;
Lamaty, F.; Lazaro, R.; Martinez, J. J. Org. Chem. 2000, 65, 6787.
(7) Yang, C.; Murray, V. W.; Wilson, L. J. Tetrahedron Lett. 2003, 44,
1783.
(18) The elimination of wall effects in microwave chemistry can be
classified as a “specific” microwave effect. For a definition of “specific”
and “nonthermal” microwave effects, see: Kappe, C. O. Angew. Chem., Int.
Ed. 2004, 43, 6250. See also ref 1e.
J. Org. Chem. Vol. 75, No. 15, 2010 5279