156 Organometallics, Vol. 16, No. 2, 1997
Communications
plexes,14 complex 2a is interestingly the first structur-
ally characterized FeW unit linked by dppm. One close
example is {FeW(µ-CC6H4Me-4)(µ-CO)(µ-dmpm)(CO)2-
[HB(pz)3]}15 (dmpm ) Me2PCH2PMe2, pz ) pyrazolyl)
which has, however, a Fe-W multiple bond [Fe-W )
2.650(1) Å].
When 1 (0.13 mmol) was reacted with M(CO)3(C2H5-
16
CN)3 (0.20 mmol) in THF (20 mL) for 6 h at ambient
temperature, the reaction mixture changed color from
yellow to maroon, the new νCO bands in the IR spectra
being at lower wavenumbers than those of 1 and 2. After
chromatographic workup (silica, 1:4 ethylacetate/n-
hexane), red powders of 3, (η5-MeC5H4)Fe(CO)(µ-η1:η1-
dppm)(µ-H)M(CO)4, were collected (3a , 0.11 mmol, 85%
yield; 3b, 0.11 mmol, 85% yield).17 Compound 3 could
also be obtained in comparable yields from the reaction
F igu r e 1. Thermal ellipsoid drawing (50%) of complex 2a .
The H atoms are omitted for clarity. Selected bond lengths
(Å): Fe-P1 2.206(1), Fe-C2 2.086(5), Fe-C3 2.037(6), Fe-
C4 2.045(5), Fe-C5 2.117(5), Fe-C8 1.763(7), Fe-C9
1.776(6), W-P2 2.551(2), W-C10 2.030(6), W-C11
2.015(8), W-C12 2.045(6), W-C13 2.043(7), W-C14
1.989(7). Selected bond angles (deg): P1-Fe-C8 94.5(2),
P1-Fe-C9 97.6(2), Fe-P1-C7 111.6(2), W-P2-C7
122.6(2), P1-C7-P2 127.7(3).
18
of 1 with either M(CO)3(THF)3 or M(CO)3(η6-C7H8)19
(see Scheme 1). The 1H NMR data for 3a indicated that
the 2:1:2 integration ratios for the η4-MeC5H5 fragment
of 1 disappeared whereas a 4-peak, equal intensity
pattern characteristic of an η5-MeC5H4 connected to a
1
chiral metal center appeared. Also observed in the H
NMR is a doublet of doublets with a tungsten satellite
(J HW ) 37 Hz) centered at δ -16.92, suggesting the
existence of a bridging hydride in 3a .20 The doublet
without tungsten satellite in the 31P NMR spectrum
shifted downfield to δ 83.40. In addition, the J PP
coupling constant of 60 Hz was considerably larger than
that of 2 [24 Hz (2a ), 19 Hz (2b)], suggesting more than
one through-bond connectivity in 3a . Compound 3b was
very similar in spectroscopic data, taking into consid-
eration the difference of W and Mo. Finally the struc-
ture of novel hydrido-bridged complex 3a was confirmed
by a single-crystal X-ray diffraction study.21
yield; 2b, 0.13 mmol, 76% yield), after chromatographic
workup on a silica column using 1:8 ethylacetate/n-
1
hexane as an eluent.12 Complex 2a revealed in its H
NMR spectra the characteristic peaks at δ 4.80 (2H),
2.58 (1H), and 2.07 (2H), consistent with a η4-MeC5H5
bonding mode. In the 31P NMR spectra, a simple AB
pattern was observed with one of them having the
tungsten satellite. Spectroscopically complex 2b be-
haved in a similar way, except for the difference
between W and Mo. Stable in the solid state at ambient
temperature, complex 2 gradually decomposed in chlo-
rinated solvents. The structure of 2a was confirmed by
X-ray crystallography.13 An ORTEP drawing is shown
in Figure 1. The two metal centers are seen linked by
one dppm bridge [Fe‚‚‚W ) 7.035(1) Å]. The torsion
angle of Fe-P‚‚‚P-W is 162.0(1)°. The ring Me group
is exo on the cyclopentadiene from Fe. The coordination
geometry around Fe(0) is a distorted square pyramid
with one of the CO ligands at the apical position. The
second CO ligand is in the basal plane trans to one of
the double bonds of the cyclopentadiene, and the PPh2-
CH2- ligand is trans to the second double bond. An
octahedral geometry around W(0) is revealed. Despite
that the dppm ligand has been broadly used as a
stabilizing backbone to construct heterodimetallic com-
The molecular structure of 3a is shown in Figure 2,
revealing both a hydride bridge and a dppm bridge
between two metal centers. The Fe-H-W vector is
bent at 128.6°, with W-H and Fe-H distances of 1.812
(14) (a) Puddephatt, R. J . Chem. Soc. Rev. 1983, 12, 99. (b) Chaudret,
B.; Delavaux, B.; Poilblanc, R. Coord. Chem. Rev. 1988, 86, 191. (c)
Braunstein, P.; de Meric de Bellefon, C.; Oswald, B. Inorg. Chem. 1993,
32, 1638. (d) Braunstein, P.; Knorr, M.; Strampfer, M.; Dusausoy, Y.;
Bayeul, D.; DeCian, A.; Fischer, J .; Zanello, P. J . Chem. Soc., Dalton
Trans. 1994, 1533.
(15) Green, M.; Howard, J . A. K.; J ames, A. P.; Nunn, C. M.; Stone,
F. G. A. J . Chem. Soc., Dalton Trans. 1986, 1697.
(16) Inorg. Synth. 1990, 28, 29-33.
(17) Spectroscopic and analytical data for 3a : IR (THF) νCO 2010
(s), 1927 (vs), 1890 (sh), 1886 (s), 1855 (s) cm-1 31P NMR (CDCl3) δ
;
83.49 (d, 2+4J PP ) 60 Hz), 13.20 (d, 2+4J PP ) 60 Hz, 1J PW ) 243 Hz); 1H
NMR (CDCl3) δ 7.62-7.00 (m, 20H, Ph), 4.59 (m, 1H), 4.46 (m, 1H),
4.41 (m, 1H), 4.00 (m, 1H) for MeC5H4, 3.65 (m, 1H), 2.78 (m, 1H) for
2
PCH2P, 1.82 (s, 3H, Me), -16.92 (dd, 1H, µ-H, J HP ) 53 Hz, 8 Hz,
1J HW ) 37 Hz); MS (FAB) m/z 846 (M+ + 1). Anal. Calcd for
C36H30FeO5P2W‚1/2Et2O: C, 51.80; H, 3.97. Found: C, 52.13; H, 4.67.
(12) Spectroscopic and analytical data for 2a : IR (n-hexane) νCO 2069
3b: IR (THF) νCO 2015 (s), 1927 (vs), 1900 (sh), 1894 (s), 1859 (s) cm-1
;
(m), 1968 (s), 1941 (b, vs), 1916 (sh) cm-1
;
31P NMR (CDCl3) δ 68.45
31P NMR (CDCl3) δ 81.62 (d,
J
) 61 Hz), 32.25 (d,
J
) 61
2+4
2+4
PP
PP
2
2
1
(d, J PP ) 24 Hz), 10.78 (d, J PP ) 24 Hz, J PW ) 245 Hz); 1H NMR
(CDCl3) δ 7.34-7.17 (m, 20H, Ph), 4.80 (m, 2H, -CHdCHCHMe-),
3.70 (m, 2H, PCH2P), 2.58 (m, 1H, -CHdCHCHMe-), 2.07 (m, 2H,
Hz); 1H NMR (CDCl3) δ 7.58-7.02 (m, 20H, Ph), 4.54 (m, 1H), 4.40
(m, 1H), 4.11 (m, 1H), 4.00 (m, 1H) for MeC5H4, 3.38 (m, 1H), 2.78 (m,
2
1H) for PCH2P, 1.81 (s, 3H, Me), -18.12 (dd, 1H, µ-H, J HP ) 53 Hz,
3
-CHdCHCHMe-), 0.24 (d, 3H, J HH ) 5 Hz, Me); MS (FAB) m/z 901
8 Hz); MS (FAB) m/z 758 (M+). Anal. Calcd for C36H30FeMoO5P2‚1/2-
Et2O: C, 57.87; H, 4.82. Found: C, 57.54; H, 4.41.
(M+). Anal. Calcd for C38H30FeO7P2W: C, 50.70; H, 3.33. Found: C,
50.88; H, 3.33. 2b: IR (n-hexane) νCO 2070 (m), 1968 (s), 1942 (b, vs),
(18) (a) Muetterties, E. L.; Bleeke, J . R.; Sievert, A. C. J . Organomet.
Chem. 1979, 178, 197. (b) Hoff, C. D. J . Organomet. Chem. 1985, 282,
201. (c) Nolan, S. P.; de la Vega, R. L.; Hoff, C. D. Organometallics
1986, 5, 2529.
2
1915 (sh) cm-1
;
31P NMR (CDCl3) δ 69.97 (d, J PP ) 19 Hz), 30.35 (d,
2J PP ) 19 Hz); 1H NMR (CDCl3) δ 7.35-7.14 (m, 20H, Ph), 4.79 (m,
2H, -CHdCHCHMe-), 3.70 (m, 2H, PCH2P), 2.58 (m, 1H,
-CHdCHCHMe-), 2.06 (m, 2H, -CHdCHCHMe-), 0.23 (d, 3H, 3J HH
(19) (a) Abel, E. W.; Bennett, M. A.; Wilkinson, G. Proc. Chem. Soc.
1958, 152. (b) Abel, E. W.; Bennett, M. A.; Burton, R.; Wilkinson, G.
J . Chem. Soc. 1958, 4559. (c) King, R. B.; Fronzaglia, A. Inorg. Chem.
1966, 5, 1837. (d) Kubas, G. J . Inorg. Chem. 1983, 22, 692. (e) Inorg.
Synth. 1990, 27, 4-6.
) 5 Hz, Me); MS (FAB) m/z 814 (M+). Anal. Calcd for C38H30
FeMoO7P2: C, 56.13; H, 3.69. Found: C, 56.20; H, 3.62.
-
(13) Crystallographic data for 2a : C38H30FeO7P2W, fw 900.30,
monoclinic, C2/c, a ) 28.394(4) Å, b ) 13.550(1) Å, c ) 19.447(2) Å, â
) 102.99(1)°, V ) 7290(1) Å3, Z ) 8, F(000) ) 3551, Dcalcd ) 1.641
g‚cm-3; Nonius CAD-4 data, Mo KR radiation, λ ) 0.710 7 Å, µ ) 37.51
cm-1. R ) 0.024, Rw ) 0.026, and GOF ) 1.19 with 79 atoms and 442
parameters for 3578 out of 4756 measured reflections.
(20) (a) The observed J HW is in the range of (µ-H)W2(CO)10- (42 Hz)b
and (µ-H)2W2(CO)82- (30 Hz).c (b) Bau, R.; Teller, R. G.; Kirtley, S. W.;
Koetzle, T. F. Acc. Chem. Res. 1979, 12, 176. (c) Lin, J . T.; Hagen, G.
P.; Ellis, J . E. J . Am. Chem. Soc. 1983, 105, 2296.