J. Am. Chem. Soc. 1997, 119, 1139-1140
1139
Unusual Ligand-Induced Reductive Elimination in
Cp*W(NO)(H)[η2-PPh2C6H4]: A Route to the
Extremely Strong π-Donor Fragment
Cp*W(NO)(PPh3)
David J. Burkey, Jeff D. Debad, and Peter Legzdins*
Department of Chemistry
The UniVersity of British Columbia
VancouVer, British Columbia, Canada V6T 1Z1
ReceiVed October 7, 1996
The fundamental importance of the formation of a C-H bond
by reductive elimination from a metal center in organometallic
chemistry has led to extensive research on this subject.1 One
mechanistic pathway for C-H reductive elimination involves
its inducement by the presence of a potential incoming ligand;
however, well-characterized examples of this process are still
relatively uncommon.2 We report here the facile ligand-induced
reductive elimination of arene in the ortho-metallated phosphine
complex Cp*W(NO)(H)[η2-PPh2C6H4] (1), which provides
access to complexes containing the exceptionally strong π-donor
fragment Cp*W(NO)(PPh3).
We recently reported the synthesis of 1 by the reaction of
Cp*W(NO)(CH2SiMe3)2 with H2 in the presence of PPh3.3 We
have since determined the solid state molecular structure of 1
(Figure 1) which reveals a cis arrangement of the aryl and
hydride ligands; the C(2)-W(1)-H(1) angle is 72(1)°.4 This
geometry contrasts with the trans configuration of R and H
ligands found for other Cp′W(NO)(R)(H)(L) complexes (Cp′
) Cp (C5H5) or Cp* (C5Me5), R ) alkyl or aryl ligand, L )
neutral two-electron donor ligand), even when they are generated
by oxidative addition of R-H.5 Presumably, isomerization of
1 to a trans arrangement of the aryl and hydride ligands is
inhibited by the chelating nature of the ortho-metallated
phosphine ligand.
Figure 1. Solid state molecular structure of 1; 50% probability thermal
ellipsoids are shown.
go cleanly to completion over a period of 48 h at room
1
temperature and 3-6 h at 45 °C, as monitored by H and 31P
NMR spectroscopies.6 Clearly, the presence of a potential
ligand, L, is required to induce reductive elimination of arene
in 1. Previous examples of ligand-induced reductive elimination
for either C-H or C-C bonds have been limited primarily to
phosphines, CO, and alkynes.2,7 Jones and Hessell recently
reported that the reductive elimination of benzene from Tp′Rh-
(H)(Ph)(CNCH2CMe3) (Tp′ ) hydridotris(3,5-dimethylpyra-
zoyl)borate) is induced by neopentyl isocyanide;2a however, to
the best of our knowledge, the use of a ketone or ester to effect
reductive elimination at a metal center is without precedent.
Spectroscopic data for 2-6 reveal that the 16-electron Cp*W-
(NO)(PPh3) fragment is an exceptional π-donor. For example,
the isocyanide complexes 2 and 3 exhibit ν(CN) bands in their
IR spectra at 1844 and 1796 cm-1, decreases of ca. 300 cm-1
when compared to the free isocyanides. The markedly low-
field 13C NMR resonances for the isocyanide carbons of 2 and
3 (226.3 and 234.6 ppm) are also indicative of substantial
π-bonding between the tungsten and the isocyanide ligands.8
Strong tungsten-isocyanide π-bonding is evident in the solid
state molecular structure of 2 (Figure 2),9 as the tert-butyl
isocyanide ligand is bent with a C(11)-N(2)-C(12) angle of
137(1)°.8a,10 Additionally, the W-C(11) bond length of 2.00(1)
Å is significantly shorter than analogous M-C bond lengths in
tungsten and molybdenum complexes with linear isocyanide
ligands, which are typically ca. 2.1 Å or greater.8b,11,12
Despite the cis arrangement of aryl and hydride ligands in 1,
the compound displays reasonable thermal stability, remaining
unchanged in THF-d8 or 1,4-dioxane-d8 solution indefinitely at
room temperature and for several days at 50 °C. However, in
the presence of isocyanides or organic carbonyls, 1 undergoes
facile reductive elimination of arene to afford Cp*W(NO)(PPh3)-
(L) complexes (2-6) in excellent yields (eq 1). The reactions
(6) The isomer of 1 with a trans configuration of aryl and hydride ligands,
which is produced in low yield upon thermolysis of dioxane solutions of 1
at 80 °C for 24 h, does not react with tert-butyl isocyanide or acetone,
even at elevated temperatures (80 °C).
(7) (a) Hardy, D. T.; Wilkinson, G.; Young, G. B. Polyhedron 1996,
15, 1363. (b) Foo, T.; Bergman, R. G. Organometallics 1992, 11, 1811. (c)
Komlya, S.; Abe, Y.; Yamamoto, A.; Yamamoto, T. Organometallics 1983,
2, 1466. (d) Tatsumi, K.; Nakamura, A.; Komlya, S.; Yamamoto, A.;
Yamamoto, T. J. Am. Chem. Soc. 1984, 106, 8181.
(8) (a) Adachi, T.; Sasaki, N.; Ueda, T.; Kaminaka, M.; Yoshida, T. J.
Chem. Soc., Chem. Commun. 1989, 1320. (b) Rommel, J. S.; Weinrach, J.
B.; Grubisha, D. S.; Bennett, D. W. Inorg. Chem. 1988, 27, 2945.
(9) Crystal data for 2: monoclinic, space group P21/n, a ) 8.975(4) Å,
b ) 22.082(3) Å, c ) 16.088(3) Å, â ) 103.34(2)°, V ) 3102(1) Å3, Z )
4, R ) 0.034, Rw ) 0.029, and GOF ) 1.38 for 2102 reflections with Io g
3σ(Io) and 365 variables.
(10) (a) Aharonian, G.; Hubert-Pfalzgraf, L. G.; Zaki, A.; Borgne, G. L.
Inorg. Chem. 1991, 30, 3105. (b) Bassett, J.-M.; Berry, D. E.; Barker, G.
K.; Green, M.; Howard, J. A. K.; Stone, F. G. A. J. Chem. Soc., Dalton
Trans. 1979, 1003. (c) Chatt, J.; Pombeiro, A. J. L.; Richards, R. L.;
Royston, G. H. D.; Muir, K. W.; Walker, R. J. Chem. Soc., Chem. Commun.
1975, 708.
(11) (a) Carmona, E.; Contreras, L.; Puebla-Gutie´rrez, E.; Monge, A.;
Sa´nchez, L. Inorg. Chem. 1990, 29, 700. (b) Carmona, E.; Galindo, A.;
Marin, J. M.; Gutie´rrez, E.; Monge, A.; Ruiz, C. Polyhedron 1988, 7, 1831.
(c) Lippard, S. J.; Warner, S. Organometallics 1986, 5, 1716. (d) Guy, M.
P.; Guy, J. T., Jr.; Bennett, D. W. Organometallics 1986, 5, 1696.
(12) The recently reported cis-(CNC6H4NC)2W(dppe)2 has dramatically
short W-C bond lengths of 1.84(1) and 1.882(9) Å for the two isocyanide
ligands. See: Hu, C.; Hodgeman, W. C.; Bennett, D. W. Inorg. Chem. 1996,
35, 1621.
(1) For some representative examples, see: (a) Halpern, J. Acc. Chem.
Res. 1982, 15, 332. (b) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J.
Am. Chem. Soc. 1986, 108, 1537. (c) Jones, W. D.; Feher, F. J. J. Am.
Chem. Soc. 1984, 106, 1650. (d) McAlister, D. R.; Erwin, D. K.; Bercaw,
J. E. J. Am. Chem. Soc. 1978, 100, 5966. (e) Hackett, M.; Whitesides, G.
M. J. Am. Chem. Soc. 1988, 110, 1449.
(2) (a) Jones, W. D.; Hessell, E. T. J. Am. Chem. Soc. 1992, 114, 6087.
(b) Gell, K. I.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 2687. (c) Pedersen,
A.; Tilset, M. Organometallics 1993, 12, 3064. (d) Jones, W. D.;
Kuykendall, V. L.; Selmeczy, A. D. Organometallics 1991, 10, 1577.
(3) Debad, J. D.; Legzdins, P.; Lumb, S. A. Organometallics 1995, 14,
2543.
(4) Crystal data for 1: triclinic, space group P1h, a ) 10.3786(5) Å, b )
10.8927(6) Å, c ) 12.7051(6) Å, R ) 95.549(1)°, â ) 97.927(1)°, γ )
116.282(1)°, V ) 1255.25(11) Å3, Z ) 2, R1 ) 0.0233, wR2 ) 0.0547, and
GOF(F2) ) 1.073 for 4283 reflections and 397 variables.
(5) (a) Legzdins, P.; Martin, J. T.; Einstein, F. W. B.; Jones, R. H.
Organometallics 1987, 6, 1826. (b) Martin, J. T. Ph.D. Thesis, University
of British Columbia, Vancouver, Canada, 1987.
S0002-7863(96)03503-2 CCC: $14.00 © 1997 American Chemical Society