Journal of the American Chemical Society
Page 4 of 6
Component Coupling Reaction of Alkyl Halides, 1,3-Dienes, and Trime-
To gain insight into the effect of the NHC catalyst, we
conducted two-component couplings between aldehyde 1a and
redox ester 3b using six- and seven-membered ring fused
thiazolium salts N1 and N2 (Scheme 1B). The six-membered N1
was less effective than the seven-membered N2 in terms of
product yield of 5ab. This might be due to the slow radical–
radical coupling of the N1-derived ketyl radical and the tertiary
alkyl radical. This is consistent with the experimental
observations that N1 has higher chemoselectivity than N2
(4aaa/5aa) in the three-component coupling (see Table 1, entries
1 and 2).14
thylsilylmethylmagnesium Chloride. Org. Lett. 2003, 5, 3959. (b) Titano-
cene-Catalyzed Regioselective Alkylation of Styrenes with Grignard Re-
agents Using b-Bromoethyl Ethers, Thioethers, or Amines. Terao, J.;
Kato, Y.; Kambe, N. Chem. Asian J. 2008, 3, 1472. (c) Wang, F.; Wang,
D.; Mu, X.; Chen, P.; Liu, G. Copper-Catalyzed Intermolecular Trifluo-
romethylarylation of Alkenes: Mutual Activation of Arylboronic Acid
and CF3+ Reagent. J. Am. Chem. Soc. 2014, 136, 10202. (c) Qin, T.;
Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura,S.; Maxwell,
B. D.; Eastgate, M. D.; Baran, P. S. A General Alkyl–Alkyl Cross-
Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents. Sci-
ence 2016, 352, 801. (d) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X.
Tandem Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel.
Angew. Chem., Int. Ed. 2016, 55, 12270. (e) García-Domínguez, A.; Li,
Z.; Nevado, C. Nickel-Catalyzed Reductive Dicarbofunctionalization of
Alkenes. J. Am. Chem. Soc. 2017, 139, 6835. (f) Kc, S.; Dhungana, R. K.;
Shrestha, B.; Thapa, S.; Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R.
Ni-Catalyzed Regioselective Alkylarylation of Vinylarenes via C-
(sp3)−C(sp3)/C(sp3)−C(sp2) Bond Formation and Mechanistic Studies. J.
Am. Chem. Soc. 2018, 140, 9801. (g) Zhang, K. F.; Bian, K. J.; Li, C.;
Sheng, J.; Li, Y.; Wang, X. S. Nickel-Catalyzed Carbofluoroalkylation of
1,3-Enynes to Access Structurally Diverse Fluoroalkylated Allenes. An-
gew. Chem., Int. Ed. 2019, 58, 5069.
1
2
3
4
5
6
7
8
9
In summary, we demonstrated the NHC organocatalyzed
vicinal alkylacylation of styrenes, acylates and acrylonitrile using
simple aldehydes and tertiary alkyl carboxylic acid-derived redox-
active esters to produce functionalized ketone derivatives. The
reaction proceeds through a radical relay mechanism, in which the
NHC organocatalyst precisely controls SET, radical addition and
radical–radical coupling. Our NHC-based radical catalysis pre-
sents a new platform for C–C bond formation in organic synthesis.
Studies on the asymmetric version of this alkylacylation (see
Supporting Information) and mechanistic investigations aided by
theoretical calculations are currently ongoing in our laboratory.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) For transition-metal catalyzed intermolecular alkylcarbofunctionalization of
alkenes through non-radical relay mechanism, see: (a) Zhang, L.; Lov-
inger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.;
Morken, J. P. Catalytic Conjunctive Cross-Coupling Enabled by Metal-
Induced Metallate Rearrangement. Science 2016, 351, 70. (b) Lovinger,
G. J.; Morken, J. P. Ni-Catalyzed Enantioselective Conjunctive Coupling
with C(sp3) Electrophiles: A Radical-Ionic Mechanistic Dichotomy. J.
Am. Chem. Soc. 2017, 139, 17293. (c) Derosa, J.; Tran, V. T.; Boulous, M.
N.; Chen, J. S.; Engle, K. M. Nickel-Catalyzed β,γ-
Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Conjunc-
tive Cross-Coupling. J. Am. Chem. Soc. 2017, 139, 10657. (d) Derosa, J.;
van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. Directed Nickel-
Catalyzed 1,2-Dialkylation of Alkenyl Carbonyl Compounds. Chem. Sci.
2018, 9, 5278.
ASSOCIATED CONTENT
Supporting Information. Experimental details and characteriza-
tion data for all new compounds (PDF). This material is available
AUTHOR INFORMATION
Corresponding Authors
(4) For selected papers on visible light-mediated alkylcarbofunctionalization of
alkenes though radical relay mechanism, see: (a) Klauck, F. J. R.; Yoon,
H.; James, M. J.; Lautens, M.; Glorius, F. Visible-Light-Mediated Deam-
inative Three-Component Dicarbofunctionalization of Styrenes with Ben-
zylic Radicals. ACS Catal. 2019, 9, 236. (b) Liu, J.; Li, W.; Xie, J.; Zhu,
C. Photoredox 1,2-Dicarbofunctionalization of Unactivated Al-
kenes via Tandem Radical Difluoroalkylation and Alkynyl Migration. Org.
Chem. Front. 2018, 5, 797 (c) Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. Selec-
tive, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel
Dual Catalysis. Org. Lett. 2019, 21, 4771. (d) Overman, L. E.; Weires, N.
A.; Slutskyy, Y. Facile Preparation of Spirolactones by an Alkoxycar-
bonyl Radical Cyclization Cross-Coupling Cascade. Angew. Chem., Int.
Ed. 2019, 58, 8561. (e) Cuadros, S.; Horwitz, M. A.; Schweitzer-Chaput,
B.; Melchiorre, P. A Visible-Light Mediated Three-Component Radical
Process Using Dithiocarbamate Anion Catalysis. Chem. Sci. 2019, 10,
5484. (f) Lv, X.-L.; Wang, C.; Wang, Q.-L.; Shu, W. Rapid Synthesis of
γ-Arylated Carbonyls Enabled by the Merge of Copper- and Photocatalyt-
ic Radical Relay Alkylarylation of Alkenes. Org. Lett., 2019, 21, 56. (g)
García-Domínguez, A.; Mondal, R.; Nevado, C. Dual Photoredox/Nickel-
Catalyzed Three Component Carbofuncationalization of Alkenes. Angew.
Chem. Int. Ed. 2019, 58, DOI:10.1002/anie.201906692.
(5) (a) Ishii, T.; Kakeno, Y.; Nagao, K.; Ohmiya, H. N-Heterocyclic Carbene-
Catalyzed Decarboxylative Alkylation of Aldehydes. J. Am. Chem. Soc.
2019, 141, 3854. See also: (b) Song, R.; Chi, Y. R. N-Heterocyclic Car-
bene Catalyzed Radical Coupling of Aldehydes with Redox-Active Esters.
Angew. Chem. Int. Ed. 2019, 58, 8628.
(6) For our NHC-based catalysis, see: (a) Yasuda, S.; Ishii, T.; Takemoto, S.;
Haruki, H.; Ohmiya, H. Synergistic N-Heterocyclic Carbene/Palladium-
Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl
or Allylic Carbonates. Angew. Chem. Int. Ed. 2018, 57, 2938. (b) Haruki,
H.; Yasuda, S.; Nagao, K.; Ohmiya, H. Dehydrative Allylation between
Aldehydes and Allylic Alcohols through Synergistic N-Heterocyclic Car-
bene/Palladium Catalysis. Chem. Eur. J. 2019, 25, 724. (c) Takemoto, S.;
Ishii, T.; Yasuda, S.; Ohmiya, H. Synergistic N-Heterocyclic Car-
bene/Palladium-Catalyzed Allylation of Aldehydes with Allylic Car-
bonates. Bull. Chem. Soc. Jpn. 2019, 92, 937.
Kazunori Nagao: nkazunori@p.kanazawa-u.ac.jp
Hirohisa Ohmiya: ohmiya@p.kanazawa-u.ac.jp
ORCID
Kazunori Nagao: 0000-0003-3141-5279
Hirohisa Ohmiya: 0000-0002-1374-1137
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number
JP18H01971 to Scientific Research (B), JSPS KAKENHI Grant
Number JP17H06449 (Hybrid Catalysis), and Kanazawa Univer-
sity SAKIGAKE project 2018 (to H.O.).
REFERENCES
(1) For reviews on dicarbofunctionalization of alkenes, see: (a) Chapdelaine, M.
J.; Hulce, M. Tandem Vicinal Difunctionalization: β-Addition to α,β-
Unsaturated Carbonyl Substrates Followed by α-Functionalization. Org.
React. 1990, 38, 227. (b) Ihara, M.; Fukumoto, K. Syntheses of Polycy-
clic Natural Products Employing the Intramolecular Double Michael Re-
action. Angew. Chem., Int. Ed. 1993, 32, 1010. (c) Egami, H.; Sodeoka,
M. Trifluoromethylation of Alkenes with Concomitant Introduction of
Additional Functional Groups. Angew. Chem., Int. Ed. 2014, 53, 8294. (d)
Giri, R.; Kc, Shekhar. Strategies toward Dicarbofunctionalization of Un-
activated Olefins by Combined Heck Carbometalation and Cross-
Coupling. J. Org. Chem. 2018, 83, 3013. (e) Zhang, J.-S.; Liu, L.; Chen,
T.; Han, L.-B. Transition-Metal-Catalyzed Three-Component Difunction-
alizations of Alkenes. Chem. Asian J. 2018, 13, 2277. (f) Derosa, J.; Tran,
V. T.; van der Puyl, V. A.; Engle, K. M. Carbon−Carbon π-Bonds as
Conjunctive Reagents in Cross-Coupling. Aldrichimica Acta 2018, 51, 21.
(g) Wang, F.; Chen, P.; Liu, G. Copper-Catalyzed Radical Relay for
Asymmetric Radical Transformations. Acc. Chem. Res. 2018, 51, 2036.
(h) Vargová, D.; Neḿethová, I.; Plevová, K.; Šebesta, R. Asymmetric
Transition-Metal Catalysis in the Formation and Functionalization of
Metal Enolates. ACS Catal. 2019, 9, 3104.
(7) Walling, C.; Cioffari, A. Cyclization of 5-Hexenyl Radicals. J. Am. Chem.
Soc. 1972, 94, 6059.
(8) Fischer, H.; Radom, L. Factors Controlling the Addition of Carbon-
Centered Radicals to Alkenes - an Experimental and Theoretical Perspec-
tive. Angew. Chem., Int. Ed. 2001, 40, 1340.
(9) For selected papers on transition-metal catalyzed intermolecular alkylacyla-
tion of alkenes, see: (a) Fusano, A.; Sumino, S.; Fukuyama, T.; Ryu, I.
(2) For selected papers on transition-metal catalyzed intermolecular alkylcar-
bofunctionalization of alkenes through radical relay mechanism, see: (a)
Mizutani, K.; Shinokubo, H.; Oshima, K. Cobalt-Catalyzed Three-
ACS Paragon Plus Environment