Organic Letters
Letter
Scheme 5. Copper-Catalyzed Vinylic Finkelstein Reaction
with Complex/Sensitive Substrates
ACKNOWLEDGMENTS
Our work was supported by the Universite
■
́
libre de Bruxelles
(ULB), the FNRS (Incentive Grant for Scientific Research No.
F.4530.13), and the Federation Wallonie-Bruxelles (ARC
Consolidator 2014-2019). A.N. acknowledges the Fonds pour
la formation a la Recherche dans l’Industrie et dans l’Agriculture
́
́
̀
(F.R.I.A.) for a graduate fellowship.
REFERENCES
■
(1) Palladium in Organic Synthesis. In Topics in Organometallic
Chemistry; Tsuji, J., Ed.; Springer GmbH: Berlin, 2005; Vol. 14.
(2) (a) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054. (b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
6954. (c) Copper-Mediated Cross-Coupling Reactions; Evano, G.,
Blanchard, N., Eds.; Wiley: Hoboken, NJ, 2013.
(3) Pollex, A. In Science of Synthesis: Houben-Weyl Methods of Molecular
Transformations; Mulzer, J., Ed.; Thieme: Stuttgart, 2008; Vol. 32, pp
431−532.
(4) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
(5) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173.
(6) Kawaguchi, S.-i.; Ogawa, A. Org. Lett. 2010, 12, 1893.
(7) Selected references: (a) Chan, T. H.; Fleming, I. Synthesis 1979,
761. (b) Stamos, D. P.; Taylor, A. G.; Kishi, Y. Tetrahedron Lett. 1996,
37, 8647. (c) Arefolov, A.; Langille, N. F.; Panek, J. S. Org. Lett. 2001, 3,
3281. (d) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Org. Lett. 2008, 10,
1727.
under our standard conditions, clearly demonstrating the
potential of the copper-catalyzed vinylic Finkelstein reaction
for the late-stage modification of complex substrates. Alkenyl
halides being integral to the core structure of a wide range of
biologically active molecules from the pharmaceutical and
agrochemical industries, we envisioned that the vinylic halogen
exchange reaction could be of potential interest for the
modification of the nature of the halogen atom of the alkenyl
halide moiety directly on the final drug or drug-like molecule
rather than going back to the early steps of the synthetic route to
perform this modification. To test this possibility, deoxy-brovavir
18 was directly engaged in the vinylic halex reaction under our
optimized conditions, without protection of the alcohols and the
pyrimidinedione that could potentially interfere in the reaction.
A clean reaction yielding the chlorinated analogue of deoxy-
brovavir 19 occurred, further demonstrating the synthetic
usefulness of our procedures.
In conclusion, we have developed an efficient and broadly
applicable system for the vinylic Finkelstein reaction. Upon
reaction with catalytic amounts of copper iodide and trans-N,N′-
dimethylcyclohexane-1,2-diamine in the presence of tetramethyl-
ammonium chloride or bromide, a wide range of easily accessible
alkenyl iodides can be smoothly transformed to their far less
available chlorinated and brominated derivatives in excellent
yields and with full retention of the double bond geometry. This
reaction also enables the chlorination of bromoalkenes and could
be successfully extended to the halogen exchange reaction
starting from gem-dibromoalkenes. The neutral reaction
conditions of this vinylic Finkelstein reaction additionally enable
the use of this procedure for the late-stage halogen exchange
from complex and/or sensitive alkenyl halides.
(8) Selected references: (a) Jung, M.; Light, L. A. Tetrahedron Lett.
1982, 23, 3851. (b) Darwish, A.; Chong, J. M. Tetrahedron 2012, 68,
654.
(9) Selected references: (a) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67,
7861. (b) Kulbitski, K.; Nisnevich, G.; Gandelman, M. Adv. Synth. Catal.
2011, 353, 1438.
(10) Representative examples: (a) Williams, D. R.; Nishitani, K.;
Bennett, W.; Sit, S. Y. Tetrahedron Lett. 1981, 22, 3745. (b) Miller, R. B.;
McGarvey, G. J. Org. Chem. 1978, 43, 4424. (c) Barluenga, J.; Moriel, P.;
Aznar, F.; Valdes, C. Adv. Synth. Catal. 2006, 348, 347. (d) Bull, J. A.;
Mousseau, J. J.; Charette, A. B. Org. Lett. 2008, 10, 5485. (e) Telvekar, V.
N.; Takale, B. S. Tetrahedron Lett. 2011, 52, 2394.
(11) Renner, M. K.; Jensen, P. R.; Fenical, W. J. Org. Chem. 1998, 63,
8346.
(12) Matthew, S.; Salvador, L. A.; Schupp, P. J.; Paul, V. J.; Luesch, H. J.
Nat. Prod. 2010, 73, 1544.
(13) Motti, C. A.; Thomas-Hall, P.; Hagiwara, K. A.; Simmons, C. J.;
Willis, R.; Wright, A. D. J. Nat. Prod. 2014, 77, 1193.
(14) Machida, H.; Sakata, S. Antiviral Res. 1984, 4, 135.
(15) McLamore, W. M.; P’an, S. Y.; Bavley, A. J. Org. Chem. 1955, 20,
109.
(16) CRC Handbook of Chemistry and Physics, 94th ed.; Haynes, W. M.,
Ed.; CRC Press: Boca Raton, FL, 2013.
(17) (a) Sheppard, T. D. Org. Biomol. Chem. 2009, 7, 1043. (b) Casitas,
A.; Ribas, X. In Copper-Mediated Cross-Coupling Reactions; Evano, G.,
Blanchard, N., Eds.; Wiley: Hoboken, NJ, 2013; pp 239−251.
(18) For Cu-mediated halogen−halogen exchange in aryl halides
(except fluorination), see: (a) Bacon, R. G. R.; Hill, H. A. O. J. Chem. Soc.
1964, 1097. (b) Suzuki, H.; Kondo, A.; Inouye, M.; Ogawa, T. Synthesis
1986, 121. (c) Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
̀
14844. (d) Casitas, A.; Canta, M.; Sola, M.; Costas, M.; Ribas, X. J. Am.
Chem. Soc. 2011, 133, 19386. (e) Feng, X.; Qu, Y.; Han, Y.; Yu, X.; Bao,
M.; Yamamoto, Y. Chem. Commun. 2012, 48, 9468. (f) Yamashita, K.-I.;
Tsuboi, M.; Asano, M. S.; Sugiura, K.-I. Synth. Commun. 2012, 42, 170.
(19) For isolated examples of a Cu-mediated chlorination of styryl
bromides using stoichiometric amounts of a copper(I) chloride−
triphenylphosphine/triphenylphosphite complex at 160−190 °C under
neat conditions, see: Axelrad, G.; Laosooksathit, S.; Engel, R. J. Org.
Chem. 1981, 46, 5200.
Detailed experimental procedures and full characterization
for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
(20) For a review, see: Chelucci, G. Chem. Rev. 2012, 112, 1344.
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX