888 Organometallics, Vol. 16, No. 5, 1997
Haarman et al.
has been focused on zerovalent palladium and platinum
complexes.16-23 Many kinetic studies have been carried
out on Ir(I) complexes, e.g. trans-[IrX(CO)L2] (X )
halide, L ) phosphine).17 It has become clear that no
single mechanism holds for oxidative-addition reactions.
In general three different mechanisms (oxidative inser-
tion, backside nucleophilic SN2 substitution, and radical
pathways) have been observed, depending on the reac-
tants and the conditions of the reaction.15-23 A recent
article on oxidative-addition reactions involving [IrCl-
(CO)L2], MeI, H2, and O2 illustrates the difficulty of
obtaining clear insight into the mechanisms of these
reactions.24
When we restrict ourselves to oxidative additions of
carbon halide substrates to complexes of Rh(I) and Ir-
(I), it has been found that, for example, additions of
CH2X2 (X ) Cl, Br, I) are generally enhanced by
increasing the electron density on the metal atom. This
is evidenced by the oxidative addition of CH2I2 to
[RhCp*(CO)2] (Cp* ) pentamethylcyclopentadiene), af-
fording [RhI(CH2I)Cp*(CO)], while [RhCp(CO)2] (Cp )
cyclopentadiene) in contrast does not react, owing to the
smaller electron donor capacity of Cp compared to Cp*.25
The activation of dichloromethane requires even stron-
ger donor ligands.26-38 For example, reaction of [Rh-
(dmpe)2]Cl containing the strongly electron donating
Me2P(CH2)2PMe2 (ddmpe) ligands with CH2Cl2 afforded
the complex [RhCl(CH2Cl)(dmpe)2]Cl‚CH2Cl2.39 Coor-
dination of ligands with three or four nitrogen donor
atoms to Rh(I) gives also strongly nucleophilic species
that can activate dichloromethane. For example, reac-
tion of a rhodium(I) complex with a tetradentate cyclic
dioxime ligand with CH2Cl2 afforded a chloromethyl
complex.36 Reaction of [RhCl(cyclooctene)2] with the
terdentate nitrogen ligand bis(4,4-dimethyloxazolin-2-
yl)pyridine (pybox) in dichloromethane gave the corre-
sponding (chloromethyl)rhodium(III) complex [RhCl2(CH2-
Cl)(pybox)], but attempts to isolate the intermediate
nucleophilic Rh(I) complexes failed.40
Recently, articles on the stability of a series of chloro-
(chloromethyl)palladium(II) and -platinum complexes in
CDCl3 solution (both in the absence and presence of air)
were published by McCrindle et al.41 In the case of
trans-mono(chloromethyl)platinum(II) complexes it was
found that they decompose in the presence of moisture
to formaldehyde and platinum hydrides, which undergo
subsequent conversion into dichlorides.42 It was sug-
gested, in analogy to the work of van Leeuwen et al.,43
that metal-carbene intermediates may be involved.
In our laboratory we are investigating the influence
of steric and electronic properties of bi- and terdentate
nitrogen ligands on the course of a number of carbon-
carbon coupling reactions mediated by palladium
complexes.44-48 In the course of these studies we have
designed bidentate nitrogen ligands which are able to
stabilize Pd(0), Pd(II), and Pd(IV) complexes.44-48 These
results prompted us to extend our investigations to
complexes of Rh with the aim of stabilizing both Rh(I)
and Rh(III) complexes and creating very nucleophilic
Rh(I) species. In this article we describe the employ-
ment of the trinitrogen species 2,6-bis(R2-carbaldimino)-
pyridine and 2,6-bis(R2-ethylidyneimino)pyridine (2,6-
(C(R1)dNR2)2C5H3N: R1 ) H, R2 ) i-Pr (1), t-Bu (2),
cyclohexyl (3), p-anisyl (4); R1 ) Me, R2 ) p-anisyl (5),
i-Pr (6)) for the isolation of novel, very reactive Rh(I)
complexes. The use of these trinitrogen ligands makes
it possible to form stable, strongly nucleophilic Rh(I)
complexes, which undergo a fast oxidative addition of
a number of substrates containing CsCl bonds. In
addition we have studied from a structural point of view
the alkylidene character of the chloromethyl moieties
of the Rh(III) complexes.
(16) Halpern, J . Acc. Chem. Res. 1970, 3, 386.
(17) Labinger, J . A.; Osborn, J . A.; Coville, N. J . Inorg. Chem. 1980,
19, 3236.
(18) Collman, J . P.; Roper, W. R. Adv. Organomet. Chem. 1968, 7,
53.
(19) Collman, J . P.; Hegedus, L. S.; Norton, J . R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry, 2nd
ed.; University Science Books: Mill Valley, CA, 1987; p 279.
(20) Atwood, J . D. In Inorganic and Organometallic Reaction
Mechanisms; Brooks/Cole: Monterey, CA, 1985; p 163.
(21) Dickson, R. S. In Organometallic Chemistry of Rhodium and
Iridium; Academic Press: London, 1983; p 277.
(22) Vaska, L. Acc. Chem. Res. 1968, 1, 335.
Exp er im en ta l Section
(23) Lukehart, C. M. In Fundamental Transition Metal Organome-
tallic Chemistry; Brooks/Cole: Monterey, CA, 1985; p 274.
(24) Wilson, M. R.; Liu, H.; Prock, A.; Giering, W. P. Organometallics
1993, 12, 2044.
(25) Paul, W.; Werner, H. Chem. Ber. 1985, 118, 3032.
(26) Werner, H.; Hofmann, L.; Feser, R.; Paul, W. J . Organomet.
Chem. 1985, 281, 317.
(27) Werner, H.; Paul, W.; Feser, R.; Zolk, R.; Thometzek, P. Chem.
Ber. 1985, 118, 261.
(28) El Amane, M.; Maisonnat, A.; Dahan, F.; Pince, R.; Poilblanc,
R. Organometallics 1985, 4, 773.
All experiments were performed under a dry nitrogen
atmosphere using standard Schlenk techniques. Benzene,
diethyl ether, and pentane were distilled before use from
sodium/benzophenone, dichloromethane and chloroform from
calcium hydride, and acetone from KMnO4/Na2CO3. Molecular
sieves (3 Å) were activated at 180 °C in vacuo for 24 h.
Deuteriobenzene was dried over sodium and stored under
nitrogen. Deuterated chlorinated solvents were dried with
(29) Moss, J . R.; Pelling, S. J . Organomet. Chem. 1982, 236, 221.
(30) Kermode, N. J .; Lappert, M. F.; Skelton, B. W.; White, A. H.;
Holton, J . J . Chem. Soc., Chem. Commun. 1981, 698.
(31) Gash, R. C.; Cole-Hamilton, D. J .; Whyman, R.; Barnes, J . C.;
Simpson, M. C. J . Chem. Soc., Dalton Trans. 1994, 1963.
(32) Burns, E. G.; Chu, S. S. C.; de Meester, P.; Lattman, M.
Organometallics 1986, 5, 2383.
(33) Olson, W. L.; Nagaki, D. A.; Dahl, L. F. Organometallics 1986,
5, 630.
(34) Scherer, O. J .; J ungmann, H. J . Organomet. Chem. 1981, 208,
153.
(35) Ball, G. E.; Cullen, W. R.; Fryzuk, M. D.; J ames, B. R.; Rettig,
S. J . Organometallics 1991, 10, 3767.
(36) Collman, J . P.; Murphy, D. W.; Dolcetti, G. J . Am. Chem. Soc.
1973, 95, 2687.
(37) Ciriano, M. A.; Tena, M. A.; Oro, L. A. J . Chem. Soc. Dalton
Trans. 1992, 2123.
(38) Fennis, P. J .; Budzelaar, P. H. M.; Frijns, J . H. G.; Orpen, A.
G. J . Organomet. Chem. 1990, 393, 287.
(40) Nishiyama, H.; Horihata, M.; Hirai, T.; Wakamatsu, S.; Itoh,
K. Organometallics 1991, 10, 2706.
(41) McCrindle, R.; Ferguson, G.; McAlees, A. J .; Arsenault, G. J .;
Gupta, A.; J ennings, M. C. Organometallics 1995, 14, 2741.
(42) McCrindle, R.; Arsenault, G. J .; Gupta, A.; Hampden-Smith,
M. J .; Rice, R. E.; McAlees, A. J . J . Chem. Soc., Dalton Trans. 1991,
949.
(43) van Leeuwen, P. W. N. M.; Roobeek, C. F.; Huis, R. J .
Organomet. Chem. 1977, 142, 233, 243.
(44) van Asselt, R.; Rijnberg, E.; Elsevier, C. J . Organometallics
1994, 13, 706.
(45) van Asselt, R.; Gielens, E. E. C. G.; Ru¨lke, R. E.; Vrieze, K.;
Elsevier, C. J . J . Am. Chem. Soc. 1994, 116, 977.
(46) van Asselt, R.; Elsevier, C. J .; Smeets, W. J . J .; Spek, A. L.;
Benedix, R. Recl. Trav. Chim. Pays-Bas 1994, 113, 88.
(47) Ru¨lke, R. E.; Han, I. M.; Elsevier, C. J .; Vrieze, K.; van
Leeuwen, P. W. N. M.; Roobeek, C. F.; Zoutberg, M. C.; Wang, Y. F.;
Stam, C. H. Inorg. Chim. Acta 1990, 169, 5.
(39) Marder, T. B.; Fultz, W. C.; Calabrese, J . C.; Harlow, R. L.;
Milstein, D. J . Chem. Soc. Chem. Commun. 1987, 1543.
(48) Ru¨lke, R. E.; Ernsting, J . M.; Spek, A. L.; Elsevier, C. J .; van
Leeuwen, P. W. N. M.; Vrieze, K. Inorg. Chem. 1993, 32, 5769.