Bioconjugate Chemistry
Communication
Table 1. Values of Absorption Maximum (λmax) and Molar
Absorptivity (ε) of UV Spectra for Conjugated Oxime Esters
Table 2. Ratios of (Form II)/(Form I) in DNA Cleavage
Obtained by Use of Conjugated Oxime Esters 5−9 with
a,b
Various Intercalating Moieties and Aroyl Groups
compound
UV (CH2Cl2) λmax (ε)
intercalating moiety
5a
5b
5c
5d
5e
5f
304 (ε 9,600), 259 (ε 48,000), 251 (ε 35,000), 225 (ε 19,385)
304 (ε 13,543), 259 (ε 60,547), 250 (ε 47,109), 221 (ε 25,469)
310 (ε 11,097), 259 (ε 49,321), 250 (ε 42,037), 217 (ε 21,296)
310 (ε 14,159), 259 (ε 54,458), 250 (ε 42,320), 221 (ε 23,631)
304 (ε 17,104), 259 (ε 68,476), 219 (ε 27,429), 214 (ε 26,000)
314 (ε 12,595), 259 (ε 53,971), 251 (ε 43,197), 224 (ε 55,235)
314 (ε 12,782), 259 (ε 54,774), 251 (ε 43,840), 224 (ε 56,057)
310 (ε 7,315), 279 (ε 20,444), 252 (ε 29,259), 218 (ε 26,444)
310 (ε 9,131), 280 (ε 20,325), 252 (ε 29,351), 218 (ε 20,994)
310 (ε 19,243), 259 (ε 79,109), 250 (ε 67,426), 217 (ε 34,158)
310 (ε 10,351), 279 (ε 21,839), 253 (ε 33,124), 231 (ε 26,228)
310 (ε 12,759), 278 (ε 18,416), 253 (ε 28,614), 218 (ε 18,911)
321 (ε 12,161), 283 (ε 11,390), 221 (ε 51,358)
304 (ε 10,504), 282 (ε 15,228), 236 (ε 60,020)
340 (ε 12,240), 221 (ε 45,217)
9,10-
thioxanthen-9-
one 10,10-
dioxide
fluoren-
9-one
(cf. 5)
anthra-
quinone
(cf. 6)
xanthen- thioxanthen-
9-one
(cf. 7)
9-one
(cf. 8)
aroyl group
(cf. 9)
C6H5CO
(cf. a)
1.8
5.7
2.1
2.7
0.42
5g
6a
6b
6c
6d
6e
6f
p-Me-
C6H4CO
(cf. b)
2.1
5.2
2.5
1.6
0.37
p-CN-
C6H4CO
(cf. c)
24
31
1.4
1.4
1.9
p-F-C6H4CO
(cf. d)
6.1
1.3
44
11
4.9
1.8
1.9
1.2
2.1
1.0
p-NO2−
C6H4CO
(cf. e)
6g
7a
7b
7c
7d
7e
7f
340 (ε 12,265), 222 (ε 42,904)
1-C10H7CO
(cf. f)
0.82
0.92
1.2
1.0
1.3
1.1
0.85
0.78
1.1
343 (ε 7,815), 238 (ε 21,346), 220 (ε 24,674), 212 (ε 14,182)
340 (ε 10,109), 221 (ε 37,470)
2-C10H7CO
(cf. g)
0.92
347 (ε 10,987), 239 (ε 16,760), 220 (ε 33,582)
341 (ε 13,583), 222 (ε 65,585), 211 (ε 22,909)
340 (ε 14,604), 235 (ε 56,126), 222 (ε 61,634)
357 (ε 4,192), 233 (ε 26,420), 216 (ε 17,761)
a
Cleavage of supercoiled circular ϕX174 RFI DNA (form I; 50 μM/
base pair, molecular weight 3.50 × 106, 5386 base pairs in length) to
form relaxed circular DNA (form II) under aerobic conditions and
photolysis under 312 nm UV light at room temperature for 2.0 h.
7g
8a
8b
8c
8d
8e
8f
b
357 (ε 4,159), 234 (ε 22,826)
Analyzed by gel electrophoresis with 1.0% agarose gel and ethidium
360 (ε 2,181), 246 (ε 32,933)
bromide staining.
357 (ε 5,025), 233 (ε 27,771), 212 (ε 19,179)
360 (ε 3,534), 257 (ε 15,714), 233 (ε 13,835)
356 (ε 3,614), 224 (ε 40,079), 207 (ε 19,382)
8g
9a
9b
9c
9d
9e
9f
357 (ε 15,506), 238 (ε 57,950)
304 (ε 6,768), 264 (ε 16,694), 229 (ε 32,149), 208 (ε 20,579)
304 (ε 12,652), 269 (ε 20,603), 231 (ε 35,427), 203 (ε 23,744)
304 (ε 7,184), 264 (ε 16,746), 235 (ε 27,937), 218 (ε 22,302)
304 (ε 14,376), 268 (ε 18,198), 230 (ε 34,142), 220 (ε 30,676)
304 (ε 12,399), 268 (ε 23,100), 232 (ε 26,500), 217 (ε 27,100)
320 (ε 8,788), 222 (ε 57,279)
Figure 1. Dose measurement of oxime ester 6c for its DNA cleaving
ability in sodium phosphate buffer (pH 6.0, 0.10 M) upon irradiation
with 312 nm UV light at 25 °C for 2.0 h; Lane 1, DNA with 6c, 500
μM, in the dark; Lanes 2−6, 25, 50, 100, 250, 500 μM, individually.
9g
304 (ε 10,220), 234 (ε 69,510)
At low dose with a low compound base pair ratio, 6e was more
potent than 6c. The outcome of the two-phase process
indicates that two different binding modes may exist, including
intercalation and groove binding.
Measurement of Binding Constants for Conjugated
Oxime Esters with an Intercalating Moiety. For the
measurement of the apparent equilibrium binding constants
(Kapp), the oxime esters were used to inhibit the binding of
ethidium bromide to calf thymus DNA.18 The solubility,
however, was poor in phosphate buffers for most oxime esters
except the anthraquinone derivatives. The Kapp values of
anthraquinone oxime ester conjugates 6c−e were obtained as
3.31 × 104, 4.49 × 104, and 3.64 × 104, respectively (Figure 3).
exhibited a significant potency of 24. Therefore, 9,10-
anthraquinone and fluoren-9-one have been proven to be
better DNA intercalators than xanthen-9-one, thioxanthen-9-
one, and 9H-thioxanthen-9-one 10,10-dioxide.3,5 These results
emerge clearly from the columns in Figure 4. Overall, potencies
followed the order 9,10-anthraquinone > fluoren-9-one ≥ xanthen-
9-one ∼ thioxanthen-9-one > 9H-thioxanthen-9-one 10,10-dioxide.
This order matches the order of planarity of these polycyclic
moieties.
The aroyl group on the other terminal of oxime ester
conjugates influenced their DNA-cleaving capacity. In these
conjugates, almost all of the phenyl-containing compounds
were more potent than the naphthyl-containing compounds
(Figure 4 and Table 2). None of the columns that are
associated with the conjugates containing a naphthyl group (1-
or 2-C10H7) had a (form II)/(form I) ratio of over 1.5.
Accordingly, the size of the aroyl groups also affected the
capacity of DNA scission. In the series of anthraquinone−
benzoyloxime conjugates, the effectiveness of the substituents on
the benzoyl nuclei in DNA scission followed the order F > CN >
NO2 > Me ∼ H. The substituents are therefore concluded to
contribute substantially to DAN cleavage.
DISCUSSION
■
Intercalation occurs when ligands (such as polycycles and
arenes) with a suitable size fit well in between base pairs in
DNA.19−21 The planarity of the nuclei generally influences the
ability of the molecules to intercalate with DNA.22−24 The
results in Table 2 reveal that anthraquinone−benzoyloxime
conjugates 6c−e exhibited higher potencies with values of 11−
44 than most others, as determined by the ratio of (form II)/
(form I). Conjugate 5c with the fluoren-9-one nucleus also
1780
dx.doi.org/10.1021/bc400060h | Bioconjugate Chem. 2013, 24, 1778−1783