D. Tan et al.
corresponding result analyses are listed in Table 4. The kinetic mode of MTPES can
be described as follows:
ꢀ
ꢁ
da
dt
112580
1:20
ð1 À aÞ a0:56
¼ e21:22 exp À
RT
Conclusions
Methyl-tri(phenylethynyl)silane (MTPES) was synthesized by Grignard reaction. The
curing schedule of MTPES can be determined as follows: (302 °C, 1 h) ? (331 °C,
2 h) ? (356 °C, 1 h). According to the Kissinger, Ozawa, Flynn–Wall–Ozawa and
Friedman methods, the reaction activation energy and the reaction order n, m were
112.58 kJ/mol, 1.20 and 0.56 respectively. The autocatalytic kinetic model was found
to be the best description of the curing reaction.
Acknowledgments We gratefully acknowledged the financial support of the National Nature Science
Foundation of China (Nos. 51477002, 51303005), the Educational Commission of Anhui Province of
China (Nos. KJ2013A087 and KJ2013A095) and the Doctor Foundation of the Anhui University of
Science and Technology.
References
1. S.B. Sastri, J.P. Armistead, T.M. Keller, Cure kinetics of a multisubstituted acetylenic monomer.
Polymer 36(7), 1449–1454 (1995)
2. M. Itoh, K. Inoue, K. Iwata et al., New highly heat-resistant polymers containing silicon: poly(si-
lyleneethynylenephenyleneethynylene)s. Macromolecules 30(4), 694–701 (1997)
3. Z. Jiang, Y. Zhou, L. Du, Characterization of a modified silicon-containing arylacetylene resin with
POSS functionality. Chin. J. Polym. Sci. 29(6), 726–731 (2011)
4. Y. Wu, R. Yu, L. Hu et al., Thermal stability of cocured blends of vinyl trimethoxysilane and aryl
acetylene resins with different posttreatments. J. Appl. Polym. Sci. 131(8), 40158–40163 (2014)
5. S. Tannenbaum, S. Kaye, G.F. Lewenz, Synthesis and properties of some alkylsilanes. J. Am. Chem.
Soc. 75(15), 3753–3757 (1953)
6. A.P. Melissaris, M.H. Litt, New high-Tg, heat-resistant, cross-linked polymers. 1. Synthesis and
characterization of di-p-ethynyl-substituted benzyl phenyl ether monomers. Macromolecules 27(4),
883–887 (1994)
7. Z.L. Dai, Q. Chen, L.Z. Ni et al., Curing kinetics and structural changes of a of di[(N-m-acet-
enylphenyl) phthalimide] ether/[(methyl) diphenylacetylene]silane copolymer. J. Appl. Polym. Sci.
100, 2126–2130 (2006)
8. B. Wrackmeyer, E. Khan, S. Bayer et al., Alkynylsilanes and alkynyl (vinyl) silanes. Synthesis,
molecular structures and multinuclear magnetic resonance study. Zeitschrift fu¨r Naturforschung B
65(6), 725–744 (2010)
9. I. Kownacki, B. Orwat, B. Marciniec et al., A new and efficient route for the synthesis of alkynyl
functionalized silicon derivatives. Tetrahedron Lett. 55(2), 548–550 (2014)
10. C. Hamdouchi, H.M. Walborsky, Mechanism of Grignard Reagent Formation (Marcel Dekker, New
York, 1996), pp. 145–218
11. Q. Chen, Y. Li, Z.L. Dai et al., Synthesis and characterization of methyl-di (phenylethynyl) silane
and its network polymer. Acta. Chim. Sin. 63(3), 254–258 (2005)
12. A. Boudin, G. Cerveau, C. Chuit et al., Reactivity of anionic pentacoordinated silicon complexes
towards nucleophiles. Angew. Chem. Int. Ed. 25(5), 473–474 (1986)
13. R. J. Corriu, G. E. Cerveau, C. G. Chuit, et al. Crosslinking agents; drugs. U. S. Pat. 4617413, 1986
123