Full Papers
doi.org/10.1002/ejoc.202100344
J. Org. Chem. 2013, 9, 2476–2536; c) M. G. Campbell, T. Ritter, Chem. Rev.
2015, 115, 612–633.
1238, 1213, 1080 1070, 1025, 1008. HRMS (TOF ESI) m/z calcd for
C17H19FNaO7 [M+Na]+: 377.1013. Found 377.1007.
[3] a) J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR1–PR43; b) T. Liang, C. N.
Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew.
Chem. 2013, 125, 8372–8423; c) P. A. Champagne, J. Desroches, J.-D.
Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, 115, 9073–9174;
d) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826–
870; e) S. Fustero, D. M. Sedgwick, R. Román, P. Barrio, Chem. Commun.
2018, 54, 9706–9725.
[4] a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832–
2842; b) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114,
2432–2506; c) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A.
Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422–518; d) M. Inoue,
Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633–10640.
[5] For a seminal study, see: M. Rueda-Becerril, C. Chatalova Sazepin, J. C. T.
Leung, T. Okbinoglu, P. Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am.
Chem. Soc. 2012, 134, 4026–4029.
[6] For reviews on radical fluorination transformations, see: a) C. Chatalova-
Sazepin, R. Hemelaere, J.-F. Paquin, G. M. Sammis, Synthesis 2015, 47,
2554–2569; b) B. Lantaño, A. Postigo, Org. Biomol. Chem. 2017, 15,
9954–9973; c) H. Yan, C. Zhu, Science China Chemistry 2017, 60, 214–
222; d) R. Szpera, D. F. J. Moseley, L. B. Smith, A. J. Sterling, V.
Gouverneur, Angew. Chem. Int. Ed. 2019, 58, 14824–14848; Angew.
Chem. 2019, 131, 14966–14991.
[7] X. Li, X. Shi, X. Li, D. Shi, Beilstein J. Org. Chem. 2019, 15, 2213–2270.
[8] For recent contributions on direct radical fluorination involving the
homolytic cleveage of a C(sp3)À Functional group bond, see: a) M. Zhou,
C. Ni, Z. He, J. Hu, Org. Lett. 2016, 18, 3754–3757; b) H. Chen, Z. Liu, Y.
Lv, X. Tan, H. Shen, H.-Z. Yu, C. Li, Angew. Chem. Int. Ed. 2017, 56,
15411–15415; Angew. Chem. 2017, 129, 15613–15617; c) J. Brioche,
Tetrahedron Lett. 2018, 59, 4387–4391; d) J. Y. Su, D. C. Grünenfelder, K.
Takeuchi, S. E. Reisman, Org. Lett. 2018, 20, 4912–4916; e) G. Tarantino,
C. Hammond, ACS Catal. 2018, 8, 10321–10330; f) D. Meyer, H. Jangra, F.
Walther, H. Zipse, P. Renaud, Nature Communication 2018, 9, 4888;
g) F. J. Aguilar Troyano, F. Ballaschk, M. Jaschinski, Y. Özkaya, A. Gómez-
Suárez, Chem. Eur. J. 2019, 25, 14054–14058; h) M. González-Esguevillas,
J. Miró, J. L. Jeffrey, D. W. C. MacMillan, Tetrahedron 2019, 75, 4222–
4227; i) G. H. Lovett, S. Chen, X.-S. Xue, K. N. Houk, D. W. C. MacMillan, J.
Am. Chem. Soc. 2019, 141, 20031–20036; j) Z. Wang, C.-Y. Guo, C. Yang,
J.-P. Chen, J. Am. Chem. Soc. 2019, 141, 5617–5622; k) P. Chen, P. Wang,
Q. Long, H. Ding, G. Cheng, T. Li, M. Li, Org. Lett. 2020, 22, 9325–9330;
l) J. Ma, W. Xu, J. Xie, Science China Chemistry 2020, 63, 187–191; m) W.
Zhang, Y.-C. Gu, J.-H. Lin, J.-C. Xiao, Org. Lett. 2020, 22, 6642–6646.
[9] For recent contributions on remote radical fluorination transformations
involving a HAT, see: a) D. D. Bume, C. R. Pitts, F. Ghorbani, S. A. Harry,
J. N. Capilato, M. A. Siegler, T. Lectka, Chem. Sci. 2017, 8, 6918–6923;
b) C. R. Pitts, D. D. Bume, S. A. Harry, M. A. Siegler, T. Lectka, J. Am.
Chem. Soc. 2017, 139, 2208–2211; c) E. M. Dauncey, S. P. Morcillo, J. J.
Douglas, N. S. Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2018, 57, 744–
748; Angew. Chem. 2018, 130, 752–756; d) H. Guan, S. Sun, Y. Mao, L.
Chen, R. Lu, J. Huang, L. Liu, Angew. Chem. Int. Ed. 2018, 57, 11413–
11417; Angew. Chem. 2018, 130, 11583–11587; e) S. P. Morcillo, E. M.
Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew. Chem.
Int. Ed. 2018, 57, 12945–12949; Angew. Chem. 2018, 130, 13127–13131;
f) P. Guo, Y. Li, X.-G. Zhang, J.-F. Han, Y. Yu, J. Zhu, K.-Y. Ye, Org. Lett.
2020, 22, 3601–3606; g) A. N. Herron, D. Liu, G. Xia, J.-Q. Yu, J. Am.
Chem. Soc. 2020, 142, 2766–2770.
((2R,3R,4S,5R)-3-Fluoro-4-hydroxy-3-methyl-5-(5-methyl-2,4-di-
oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl
benzoate (13): To
a RT solution of diacetate 12 (130 mg,
0.37 mmol) in dry MeCN (2.0 mL) were added at RT thymine
(64 mg, 0.51 mmol) and BSA (250 μL, 1.02 mmol). The reaction
°
mixture was heated at 50 C for 5–10 min. After this time, the
homogenous reaction mixture was allowed to cool to RT before
°
being cooled to 0 C. TMSOTf (68 μL, 0.37 mmol) was added and
°
the reaction mixture was heated at 60 C and stirred for 15 h. After
this time, the reaction mixture was cooled to RT and carefully
quenched with a saturated aqueous solution of NaHCO3. The
aqueous layer was extracted with EtOAc (3×15 mL). The combined
organic layers were washed with brine, dried over Na2SO4, filtered
and concentrated under reduced pressure. The crude residue
(diastereoisomer ratio >95:5) was purified by flash chromatog-
raphy on silica gel (CH2Cl2/EtOAc: gradient from 100/0 to 70/30) to
afford fluoro-nucleoside 13 (74 mg, 48%) as a colourless oil. The
stereochemistry at the newly formed sterocenter was determined
1
by NOESY experiment; [α]20 +12 (c 1.0, CH2Cl2); H NMR (300 MHz,
D
CDCl3) [mixture of rotamers*] δ 9.74* and 9.71* (br s, 1H, NHThy),
8.07–7.96 (m, 2H, ArH), 7.58–7.50 (m, 1H, ArH), 7.46–7.35 (m, 2H, ArH),
7.23 (br s, 1H, overlap with solvent signal and deduced from COSY
experiment, CHThy), 6.06 (d, 1H, JH-H =2.7 Hz, CH), 5.25 (dd, 1H, JH-F
3
3
=18.9 Hz and 3JH-H =2.7 Hz, CH), 4.71 (dd, 1H, AB syst., JH-H
=
2
12.3 Hz, 3JH-H =3.9 Hz, CH2), 4.71 (dd, 1H, AB syst., 2JH-H =12.3 Hz,
3JH-H =6.6 Hz, CH2), 4.19 (ddd, 1H, 3JH-F =25.5 and JH-H =6.6 and
3.9 Hz, CH), 2.13 (s, 0.33×3H, CH3), 1.86 (s, 3H, CH3Thy), 1.52 (d, 3H,
3JH-F =22.5 Hz, CH3); 13C {1H} NMR (75 MHz, CDCl3) [mixture of
rotamers*] δ 169.1 (C), 166.3 (C), 163.9 (C), 150.6 (C), 135.0* (CH),
134.9* (CH), 133.6 (CH), 129.8 (2×CH), 129.4 (C), 128.6 (2×CH), 112.1
(C), 100.2 (d, 1JC-F =178.5 Hz, C), 87.9 (CH), 82.2 (d, 2JC-F =20.5 Hz,
2
2
CH), 82.1 (d, JC-F =21.1 Hz, CH), 80.4 (d, JC-F =36.0 Hz, CH), 61.5 (d,
3JC-F =8.5 Hz, CH2), 20.6 (CH3), 16.2 (d, 2JC-F =23.8 Hz, CH3), 12.7 (CH3);
19F NMR (282 MHz, CDCl3) δ À 161.5–À 161.9 (m, 1F); FTIR (νmax cmÀ 1
)
2922, 1691,1263, 1219, 1065, 712, 419. HRMS (TOF ES) m/z calcd for
C20H20FN2O7 [MÀ H]À :419.1255 found 419.1251.
Acknowledgements
Financial support was provided by Normandie Université, CNRS,
INSA Rouen and LABEX SYNORG (ANR-11-LABX-0029). E.V. thanks
the Région Normandie for a doctoral fellowship (RIN-100-2020-
RraFluR).
Conflict of Interest
[10] For recent contributions on remote radical fluorination transformations
involving the homolytic cleveage of a C(sp3)À C(sp3) bond, see: a) J. B.
Roque, Y. Kuroda, L. T. Göttemann, R. Sarpong, Science 2018, 361, 171;
b) X. Zhou, H. Ding, P. Chen, L. Liu, Q. Sun, X. Wang, P. Wang, Z. Lv, M.
Li, Angew. Chem. Int. Ed. 2020, 59, 4138–4144; Angew. Chem. 2020, 132,
4167–4173; c) Y.-C. Lu, H. M. Jordan, J. G. West, Chem. Commun. 2021,
57, 1871–1874 .
The authors declare no conflict of interest.
Keywords: Alkyl fluorides
·
Cesium oxalates
·
Radical
fluorination reactions · Silver catalysis
[11] For recent contributions on direct radical fluorination of a C(sp3)À H
bond, see: a) A. M. Hua, D. N. Mai, R. Martinez, R. D. Baxter, Org. Lett.
2017, 19, 2949–2952; b) D. D. Bume, S. A. Harry, T. Lectka, C. R. Pitts, J.
Org. Chem. 2018, 83, 8803–8814; c) K. E. Danahy, J. C. Cooper, J. F.
Van Humbeck, Angew. Chem. Int. Ed. 2018, 57, 5134–5138; Angew.
Chem. 2018, 130, 5228–5232; d) H. Egami, S. Masuda, Y. Kawato, Y.
Hamashima, Org. Lett. 2018, 20, 1367–1370; e) W. Liu, X. Huang, M. S.
Placzek, S. W. Krska, P. McQuade, J. M. Hooker, J. T. Groves, Chem. Sci.
2018, 9, 1168–1172; f) A. M. Hua, S. L. Bidwell, S. I. Baker, H. P. Hratchian,
R. D. Baxter, ACS Catal. 2019, 9, 3322–3326; g) Y. Takahira, M. Chen, Y.
[1] a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320–330; b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly,
N. A. Meanwell, J. Med. Chem. 2015, 58, 8315–8359; c) N. A. Meanwell, J.
Med. Chem. 2018, 61, 5822–5880.
[2] a) T. Furuya, J. E. M. N. Klein, T. Ritter, Synthesis 2010, 2010, 1804–1821;
b) G. Landelle, A. Panossian, S. Pazenok, J.-P. Vors, F. R. Leroux, Beilstein
Eur. J. Org. Chem. 2021, 2421–2430
2429
© 2021 Wiley-VCH GmbH