Table 3 NMR spectroscopic data for novel productsa
Product
δC(J/Hz, assignment b)
δH (multiplicity, J/Hz, assignment b)
10b
45.00 (1Ј), 109.66 (1), 115.52 (JC3Ј,F 21.1, 3Љ), 119.27 (3),
120.53 (4), 122.45 (4a), 126.05 (2), 128.92 (JC2Љ,F 8.2, 2Љ),
134.17 (JC1Љ,F 3.7, 1Љ), 140.21 (9a), 161.53 (JC4Љ,F 242.7, 4Љ).
28.81 (CH3), 79.85 (CMe3), 122.26 (3), 130.94 (1), 131.11
(2), 161.62 (4), 190.93 (CHO).
5.62 (s, 2 H, 1Ј), 7.06 (t, J 8.8, 2 H), 7.20 (t, 4 H), 7.42 (t, 2
H), 7.62 (d, 2 H, 1), 8.16 (d, J 7.8, 2 H, 4).
4-ButOC6H4CHO
1.44 (s, 9 H, CH3 × 3), 7.10 (d, J2,3 8.5, 2 H, 3), 7.80 (d, J2,3
8.5, 2 H, 2), 9.91 (s, 1 H, COH).
12
44.37 (1Ј), 109.61 (1), 119.11 (3), 120.48 (4), 122.45 (4a),
124.84 (2Ј), 125.93 (2), 126.39 (2Љ), 127.76 (4Љ), 128.68 (3Љ),
131.4 (3Ј), 136.16 (1Љ), 140.13 (9a).
5.15 (d, J 6.37, 2 H, 1Ј), 5.61 (d, J2Ј,3Ј 16.11, 1 H, 3Ј), 6.38
(tt, J 5.86, J2Ј,3Ј 16.11, 1 H, 2Ј), 7.14–7.27 (m, 7 H, 3 and
2Љ–4Љ), 7.46 (t, J1,2 = J2,3 = 7.5, 2 H, 2), 7.63 (d, J1,2 7.81, 2
H, 1), 8.18 (d, J3,4 7.81, 2 H, 4).
14a
110.62 (1), 119.6 (3), 120.12 (4), 123.3 (4a), 123.41 (8Љ),
125.17 (2Љ), 125.35 (3Љ), 125.65 (6Љ), 125.88 (2), 126.33 (7Љ),
126.52 (3Ј), 126.81 (2Љ), 128.04 (4ٞ), 128.25(1Ј), 128.44
(4Љ), 128.58 (3ٞ), 128.77 (5Љ), 130.82 (1Љ), 131.25 (4Ј),
131.35 (8aЉ), 133.35 (4aЉ), 135.28 (2Ј), 136.28 (1ٞ), 139.91
(9a).
6.05 (d, J3Ј,4Ј16.1, 1 H, 4Ј), 6.60 (d, J2Љ,3Љ 7.3, 1 H, 2Љ), 6.75
(t, J2Љ,3Љ = J3Љ,4Љ = 7.8, 1 H, 3Љ), 7.16–7.28 (m, 11 H, 1–3 and
2ٞ–4ٞ), 7.31 (d, J3Ј,4Ј 15.7, 1 H, 3Ј), 7.45 (br d, 2 H, 4Љ and
6Љ), 7.56 (t, J6Љ,7Љ 7.5, 1 H, 7Љ), 7.70 (d, J5Љ,6Љ 7.8, 1 H, 5Љ),
7.75 (s, 1 H, 1Ј), 8.07 (d, J3,4 7.3, 2 H, 4), 8.27 (d, J7Љ,8Љ 8.3, 1
H, 8Љ).
14b
14cc
15a
55.02 (CH3), 110.51 (1), 113.94 (3Љ), 119.69 (3), 120.25 (4),
123.29 (9a), 126.05 (2), 126.58 (2ٞ or 3ٞ), 126.85 (1Љ),
127.09 (3Ј), 128.48 (2ٞ or 3ٞ), 129.29 (4Ј), 130.23 (2Љ),
131.34 (2Ј), 131.59 (1Ј), 136.51 (1ٞ), 139.27 (4a), 159.38
(4Љ).
110.52 (1), 119.78 (3), 120.26 (4), 123.36 (4a), 126.72 (2),
126.72 (2ٞ), 126.8 (3Ј), 127.9 (4ٞ), 128.14 (4Љ), 128.42 (3Љ),
128.5 (3ٞ), 128.62 (2Љ), 130.57 (4Ј), 131.84 (1Ј), 133.48 (2Ј),
134.11 (1Љ), 136.28 (1ٞ), 139.31 (9a).
3.62 (s, 3 H, CH3), 5.72 (d, J3Ј,4Ј 15.8, 1 H, 4Ј), 6.44 (d,
J2Љ,3Љ 8.6, 2 H, 3Љ), 6.58 (d, J2Љ,3Љ 9.0, 2 H, 2Љ), 7.01 (s, 1 H, 1Ј),
7.10–7.30 (m, 11 H), 7.13 (d, 1 H, 3Ј), 8.14 (d, J3,4 7.9, 2 H,
4).
5.85 (d, J3Ј,4Ј 16.11, 1 H, 4Ј), 6.68 (d, J2Љ,3Љ 7.3, 2 H, 2Љ),
6.92 (t, J2Љ,3Љ = J3Љ,4Љ = 7.3, 2 H, 3Љ), 6.97 (d, 1 H, 4Љ), 7.07 (s, 1
H, 1Ј), 7.16 (d, J3Ј,4Ј 16.11, 1 H, 3Ј), 7.16–7.26 (m, 9 H, 1
and 3 and 2ٞ–4ٞ), 7.31 (t, J2,3 = J1,2 = 7.8, 2 H, 2), 8.16 (d,
J3,4 7.8, 2 H, 4).
6.21 (d, J3Ј,4Ј 16.1, 1 H, 4Ј), 7.09 (m, 5 H, 2ٞ–4ٞ), 7.30 (t,
J2,3 = J3,4 = 7.3, 2 H, 3), 7.37 (d,d 1 H, 3Ј), 7.39 (s,d 1 H, 1Ј),
7.44 (t, J1,2 = J2,3 = 7.3, 2 H, 2), 7.47–7.54 (m, 4 H, 1 and
6Љ–7Љ), 7.59 (t, J2Љ,3Љ = J3Љ,4Љ = 7.5, 1 H, 3Љ), 7.83 (d, J2Љ, 3Љ 7, 1
H, 2Љ), 7.90 (d, J3Љ,4Љ 7,e 2 H, 4Љ–5Љ), 7.99 (d, J7Љ,8Љ 8.8, 1 H,
8Љ), 8.18 (d, J3,3 7.3, 2 H, 4).
110.45 (1), 119.72 (3), 120.3 (4), 121.6 (3Ј), 123.26 (4a),
124.71 (8Љ), 125.41 (3Љ), 126.02 (2), 126.3 (6Љ), 126.59 (7Љ),
126.94 (2ٞ), 128.13 (4ٞ), 128.28 (2Љ), 128.5 (3ٞ), 128.61
(4Љ), 128.84 (5Љ), 130.33 (1Ј), 131.88 (8aЉ), 132.52 (1Љ), 133
(4Ј), 133.68 (4aЉ), 136.28 (1ٞ), 136.61 (2Ј), 141.3 (9a).
15c
16
110.51 (1), 119.65 (3), 120.21 (4), 121.28 (3Ј), 123.21 (4a),
125.89 (2), 126.97 (2ٞ), 128.04 (4Љ), 128.2 (4Љ), 128.58 (3ٞ),
128.71 (3Љ), 129.56 (2ٞ), 131.96 (1Ј), 133.33 (4Ј), 135.04
(2Ј), 135.69 (1Љ), 136.36 (1ٞ), 141.18 (9a).
6.19 (d, J3Ј,4Ј 16.1, 1 H, 4Ј), 6.85 (s, 1 H, 1Ј), 7.15–7.20 (m,
5 H, 2ٞ–4ٞ), 7.26 (dd, J2,3 = J3,4 = 7.8, 2 H, 3), 7.28–7.35
(t, 1 H, 4Љ), 7.38 (t, J1,2 = J2,3 = 7.5, 2 H, 2), 7.42 (d, J1,2 7.5,
2 H, 1), 7.46 (t, J2Љ,3Љ = J3Љ,4Љ = 7.5, 2 H, 3Љ), 7.52 (d, J3Ј,4Ј 16.1,
1 H, 3Ј), 7.53–7.56 (br d, 2 H, 2Љ), 8.14 (d, J3,4 8.3, 2 H, 4).
6.66 (t, J2ٞ,3ٞ = JH 3ٞ,Fٞ = 8.8, 2 H, 3ٞ), 6.80 (dd, J2ٞ,3ٞ 8.8,
JH 2ٞ,F4ٞ 5.4, 2 H, 2ٞ), 6.93 (t, J2Љ,3Љ = JH 3Љ,F4Љ = 8.8, 2 H, 3Љ),
7.02 (d, J1,2 7.8, 2 H, 1), 7.16 (dd, J2Љ,3Љ 9, JH 2Љ,F4Љ 5, 2 H, 2Љ),
7.21 (s, 1 H, 2Ј), 7.22–7.27 (m, 4 H, 2 and 3), 8.12 (d, J3,4
8.3, 2 H, 4).
110.91 (1), 115.44 (JC3ٞ,F4ٞ 21.1, 3ٞ), 115.8 (JC3Љ,F4Љ 22, 3Љ),
120.19 (3), 120.31 (4), 123.72 (4a), 125.78 (2Ј), 126.07 (2),
127.71 (JC2Љ,F4Љ 8.2, 2Љ), 130.17 (JC2ٞ,F4ٞ 8.2, 2ٞ), 130.8
(JC3ٞ,F4ٞ 2.7, 1ٞ), 132.57 (JC1Ј,F4Љ 1.8, 1Ј), 133.7 (JC1Љ,F4Љ 3.7,
1Љ), 139.2 (9a), 162.03 (JC4ٞ,F4ٞ 249.1, 4ٞ), 163.03 (JC4Љ,F4Љ
249.1, 4Љ).
17
19
23
28.71 (CH3), 78.72 (CMe3), 111.09 (1), 115.72 (JC3Љ,F 21.1,
3Љ), 119.98 (3), 120.18 (4), 123.68 (3ٞ), 125.9 (2), 126.54f
(4a), 126.56f (2Ј), 127.57 (JC2Љ,F 8.2, 2Љ), 129.19 (3ٞ), 129.69
(1ٞ), 131.57 (1Ј), 134.05 (JC1Љ,F 3.7, 1Љ), 139.33 (9a), 155.31
(4ٞ), 162.85 (JC4Љ,F 249.1, 4Љ).
28.72 and 28.84 (CH3), 78.62 and 78.77 (CMe3), 111.24
(1), 119.77 (3), 120.05 (4), 123.58 (4a), 123.68 (3ٞ), 123.82
(3Љ), 125.52 (2Ј), 125.78 (2), 126.51 (2Љ), 129.04 (2ٞ),
130.06 (1ٞ), 132.34 (1Ј), 132.63 (1Љ), 139.5 (9a), 155.02
(4ٞ), 156.04 (4Љ).
109.82 (1), 120.12 (3), 120.23 (4Ј), 120.42 (4), 123.06 (5Ј),
123.53 (4a), 124.31, 126.10 (2), 126.60 (2Ј) 126.99, 127.30,
127.42 (8Ј), 127.70 (4Љ), 128.46 (3Љ), 128.62, 129.02, (8aЈ or
10aЈ), 130.07, (4bЈ), 130.15 (2Љ), 132.00 (8aЈ or 10aЈ),
132.04 (4aЈ), 135.36 (3Ј), 140.09 (1Љ), 141.12 (9a), 143.00
(1Ј).
1.18 (s, 9 H, CH3 × 3), 6.59 (d, J2ٞ,3ٞ 8.3, 2 H, 3ٞ), 6.72 (d,
J2ٞ,3ٞ 8.5, 2 H, 2ٞ), 6.93 (dd, J2Љ,3Љ 8.8, J3Љ,F 8.5, 2 H, 3Љ), 7.02
(d, J1,2 8.3, 2 H, 1), 7.17 (dd, J2Љ,3Љ 8.5, J2Љ,F 5.4, 2 H, 2Љ),
7.20–7.25 (m, 5 H, 2, 3 and 2Ј),g 8.12 (d, J3,4 8.8, 2 H, 4).
1.22 (s, 9 H, CH3 × 3), 1.35 (s, 9 H, CH3 × 3), 6.62 (d, J2ٞ,3ٞ
8.5, 2 H, 3ٞ), 6.73 (d, J2ٞ,3ٞ 8.8, 2 H, 2ٞ), 6.90 (d, J2Љ,3Љ 8.8, 2
H, 3Љ), 7.08 (d, J1,2 7.8, 2 H, 1), 7.15 (d, J2Љ,3Љ 8.8, 2 H, 2Љ),
7.22–7.28 (m, 5 H, 2, 3 and 2Ј), 8.12 (d, J3,4 8, 2 H, 4).
7.32 (t, J 7.8, 2 H, 3), 7.44 (t, J 8.3, 2 H, 2), 7.47 (t, J 7, 1
H, 4Љ), 7.53–7.62 (m, 6 H), 7.63–7.68 (m, 2 H), 7.75–7.78
(m, 2 H), 7.91–7.95 (m, 2 H), 8.20 (d, J 7.8, 2 H, 1), 8.64–
8.67 (m, 1 H, 5Ј), 8.93 (d, J 1.5, 1 H, 4Ј).
a
1
The H NMR spectra at room temperature were referenced using SiMe4 as the internal standard. The 13C NMR spectra were referenced to the
middle line of CDCl3 at δ 77.00 as per ref. 23(c). Assignments were aided by H-COSY, HMQC (null = 0.65 s) and HMBC (taumb = 0.05 s)
b
experiments similar to those recently described in ref. 27. The atom numbering is indicated on the respective structures. c HMQC (null = 0.7 s).
g
d Doublet and singlet are superimposed. e Two doublets with the same chemical shift. f Values may be interchanged. From difference NOE
experiment, H2Ј resonates at δ 7.22.
2-methylpropene gas was bubbled slowly into the reaction for
17 h. An aliquot indicated a 64% conversion (HPLC). After this
period the solution was filtered, the filtrate extracted with
10% NaOH (2 × 100 cm3), washed with H2O (2 × 100 cm3) and
dried over MgSO4. The mixture was filtered and the filtrate
evaporated. The residue weighed 11 g. This residue was
adsorbed on alumina (basic) and chromatographed using light
petroleum (bp 35–60 ЊC)–EtOAc (97:3) as eluent. Evaporation
of the solvent from the later fractions gave 4-tert-butoxy-
benzaldehyde28 (2.0 g) as an oil.
aniline (1.04 g, 0.0110 mol) and benzene (30 cm3), and the water
was removed by azeotropic distillation in a Dean–Stark trap for
1 h. Unreacted aldehyde remained (HPLC) and aniline was
added in increments of 0.2 cm3 to the boiling benzene and dis-
tillation continued for 15 min after each addition. The 1H NMR
spectrum of the mixture, where the equilibrium is completely
over to the imine side, shows ca. 75% mole excess of aniline.
Attempted purification by chromatography using either silica
gel or aluminum oxide (basic), with light petroleum–EtOAc
(97:3) as eluent, gave a mixture containing 10–15% of the alde-
hyde by hydrolysis. Since an excess of aniline is not detrimental
To 4-tert-butoxybenzaldehyde (2.0 g, 0.011 mol) was added
J. Chem. Soc., Perkin Trans. 1, 1997
1065