RSC Advances
Paper
Table 1 Photochemical properties and hydrolysis half-lives of photocaged L-aspartates (1)a
Photocaged compound
s1/ms
s2/ms
4365
3355/Mꢀ1 cmꢀ1
t1/2/h (hydrolysis)b
1a
1b
1c
1.5 ꢁ 0.1
870 ꢁ 40
10.4 ꢁ 0.4
n/a
38 ꢁ 1
0.105 ꢁ 0.005
0.048 ꢁ 0.007
0.14 ꢁ 0.02
430
4060
520
13.9 ꢁ 0.2
12.6 ꢁ 0.1
10.2 ꢁ 0.1
1.48 ꢁ 0.08
a
Time constants were derived by exponential tting of kinetic traces from laser ash photolysis data and represent the two biexponential
components of nitronate decay (suspected to coincide with the release of L-aspartate). Quantum yield determinations were carried out with
a 365 nm UV LED, and were measured using phenylglyoxylic acid actinometry and HPLC. Thermal half-lives were obtained by tting 1H NMR
data recorded over 24 h with a water-suppression pulse sequence. See ESI for more details. b Half-life of the less stable diastereoisomer at pH 7.
F. Diederich, E. F. Pai and R. J. D. Miller, Nat. Methods,
2018, 15, 901–904.
Conflicts of interest
7 F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman,
J. S. Olson, G. N. Phillips, M. Wulff and P. A. Annrud,
Science, 2003, 300, 1944–1947.
The authors declare no conicts of interest.
Acknowledgements
8 M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona,
¨
M. Cammarata, A. B. Wohri, L. C. Johansson, F. Ewald,
This work was supported by the Cluster of Excellence ‘The
Hamburg Centre for Ultrafast’ of the Deutsche For-
schungsgemeinscha (DFG) – EXC 1074 – project ID 194651731.
B. A. Y. thanks the Wellcome Trust (Grant code 110296/Z/15/Z)
for support. J. R. thanks the DFG (Emmy-Noether, grant code
251211948) for generous funding. The Heinrich Pette Institute,
Leibniz Institute for Experimental Virology is supported by the
Free and Hanseatic City of Hamburg and the Federal Ministry of
Health. We thank Prof Malte Brasholz for the use of laboratory
equipment and helpful discussions. We thank Dr Diana C. F.
Monteiro for helpful discussions. The authors acknowledge the
Scientic Service of Hamburg University's Chemistry Depart-
ment for compound characterisation and we are grateful to
Claudia Wontorra in particular for NMR (hydrolysis studies). J.
J. Z.-D. wishes to thank Dana Komadina, Dr Iosiphina Sarrou
and Prof Henry N. Chapman for the use of their HPLC equip-
ment. The authors wish to thank Prof Godfrey Beddard for
reading the manuscript and providing helpful comments. J. J.
Z.-D. thanks Owen Tuck for help preparing buffers and stan-
dards, and Bastian Wulff for assistance with the operation of
the Applied Photophysics LKS80 instrument used for laser ash
photolysis experiments.
M. Eklund, M. Wulff, J. Davidsson and R. Neutze, Structure,
2009, 17, 1265–1275.
9 K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila,
J. S. Robinson, J. Tenboer, S. Basu, S. Boutet,
D. P. DePonte, M. Liang, T. A. White, N. A. Zatsepin,
O. Yefanov, D. Morozov, D. Oberthuer, C. Gati,
G. Subramanian, D. James, Y. Zhao, J. Koralek,
J. Brayshaw, C. Kupitz, C. Conrad, S. Roy-Chowdhury,
J. D. Coe, M. Metz, P. L. Xavier, T. D. Grant, J. E. Koglin,
ˇ
G. Ketawala, R. Fromme, V. Srajer, R. Henning,
J. C. H. Spence, A. Ourmazd, P. Schwander, U. Weierstall,
M. Frank, P. Fromme, A. Barty, H. N. Chapman, K. Moffat,
J. J. van Thor and M. Schmidt, Science, 2016, 352, 725–729.
10 J. Kubelka, Photochem. Photobiol. Sci., 2009, 8, 499–512.
11 I. Schlichting, S. C. Almo, G. Rapp, K. Wilson, K. Petratos,
A. Lentfer, A. Wittinghofer, W. Kabsch, E. F. Pai,
G. A. Petsko and R. S. Goody, Nature, 1990, 345, 309–315.
12 P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens,
M. Rubina, V. Popik, A. Kostikov and J. Wirz, Chem. Rev.,
2013, 113, 119–191.
13 D. P. Nguyen, M. Mahesh, S. J. Elsasser, S. M. Hancock,
ˇ
´
¨
C. Uttamapinant and J. W. Chin, J. Am. Chem. Soc., 2014,
136, 2240–2243.
Notes and references
14 E. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson
and D. M. Chenoweth, Nat. Commun., 2014, 5, 5475.
15 H.-D. Gao, P. Thanasekaran, C.-W. Chiang, J.-L. Hong,
Y.-C. Liu, Y.-H. Chang and H.-M. Lee, ACS Nano, 2015, 9,
7041–7051.
1 P. K. Agarwal, S. R. Billeter, P. T. R. Rajagopalan,
S. J. Benkovic and S. Hammes-Schiffer, Proc. Natl. Acad.
Sci., 2002, 99, 2794–2799.
2 S. Hay, M. J. Sutcliffe and N. S. Scrutton, Proc. Natl. Acad. Sci.,
2007, 104, 507–512.
16 C. Chou, D. D. Young and A. Deiters, ChemBioChem, 2010,
11, 972–977.
3 G. Porter, Proc. R. Soc. A, 1950, 200, 284–300.
4 P. Coppens, M. Pitak, M. Gembicky, M. Messerschmidt,
S. Scheins, J. Benedict, S. Adachi, T. Sato, S. Nozawa,
K. Ichiyanagi, M. Chollet and S. Koshihara, J. Synchrotron
Radiat., 2009, 16, 226–230.
17 I. Josts, S. Niebling, Y. Gao, M. Levantino, H. Tidow and
D. Monteiro, IUCrJ, 2018, 5, 667–672.
¨
18 Y. V. Il'ichev, M. A. Schworer and J. Wirz, J. Am. Chem. Soc.,
2004, 126, 4581–4595.
¨
19 D. Binder, C. Bier, A. Grunberger, D. Drobietz, J. Hage-
5 B. A. Yorke, G. S. Beddard, R. L. Owen and A. R. Pearson, Nat.
Methods, 2014, 11, 1131–1134.
¨
¨
Hulsmann, G. Wandrey, J. Buchs, D. Kohlheyer,
A. Loeschcke, W. Wiechert, K.-E. Jaeger, J. Pietruszka and
T. Drepper, ChemBioChem, 2016, 17, 296–299.
¨
6 E. C. Schulz, P. Mehrabi, H. M. Muller-Werkmeister,
F. Tellkamp, A. Jha, W. Stuart, E. Persch, R. De Gasparo,
8698 | RSC Adv., 2019, 9, 8695–8699
This journal is © The Royal Society of Chemistry 2019