K. H. V. Reddy et al. / Tetrahedron Letters 52 (2011) 2679–2682
2681
S
S
Et
Et
I
I
S
CuO, DMSO, Cs2CO3
NH2
55%
48%
H2N
15 h,110°C
Et
S
Et
31%
Scheme 2. CuO nanoparticles catalyzed synthesis of aryl unsymmetrical and symmetrical sulfides.
Table 4
References and notes
Recycling of CuO nanoparticles
1. (a) Alcaraz, M.-L.; Atkinson, S.; Cornwall, P.; Foster, A. C.; Gill, D. M.;
Humphries, L. A.; Keegan, P. S.; Kemp, R.; Merifield, E.; Nixon, R. A.; Noble, A.
J.; Obeirne, D.; Patel, Z. M.; Perkins, J.; Rowan, P.; Sadler, P.; Singleton, J. T.;
Tornos, J.; Watts, A. J.; Woodland, I. A. Org. Process Res. Dev. 2005, 9, 555; (b) Liu,
G.; Link, J. T.; Pei, Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K. C.; Okasinski,
G. F.; von Geldern, T. W.; Ormes, M.; Fowler, K.; Gallatin, M. J. Med. Chem. 2000,
43, 4025; (c) Wang, Y.; Chackalamannil, S.; Chang, W.; Greenlee, W.; Ruperto,
V.; Duffy, R. A.; Mcquade, R.; Lachowicz, J. E. Bioorg. Med. Chem. Lett. 2001, 11,
891; (d) Bonnet, B.; Soullez, D.; Girault, S.; Maes, L.; Landry, V.; Davioud-
Charvet, E.; Sergheraert, C. Bioorg. Med. Chem. 2000, 8, 95; (e) Baird, C. P.;
Rayner, C. M. J. Chem. Soc., Perkin Trans. 1 1998, 1973; (f) Procter, D. J. J. Chem.
Soc., Perkin Trans. 1 2001, 335.
Recycles
Yield (%)
Catalyst recoverya (%)
1
2
3
4
97
95
91
89
96
93
91
88
a
Reaction conditions: aryl halides (2.0 mmol), thiourea (1.2 mmol), nano CuO
(5.0 mol %), Cs2CO3 (2.0 equiv), DMSO (2.0 mL), 110 °C, 15 h, under a nitrogen
atmosphere.
2. (a) Lindley, J. Tetrahedron 1984, 40, 1433; (b) Yamamoto, T.; Sekine, Y. Can. J.
Chem. 1984, 62, 1544; (c) Hickman, R. J. S.; Christie, B. J.; Guy, R. W.; White, T. J.
Aust. J. Chem. 1985, 38, 899; (d) Bierbeek, A. V.; Gingras, M. Tetrahedron Lett.
1998, 39, 6283.
3. (a) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397; (b) Mispelaere-
Canivet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P. Tetrahedron 2005, 61, 5253; (c)
Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587; (d) Fernandez-Rodrıguez, M. A.; Shen,
Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 218; (e) Lee, J.-Y.; Lee, P. H. J. Org.
Chem. 2008, 73, 7413.
sponding aryl sulfides in excellent yields (Table 3, entries 3–5),
whereas in the presence of electron withdrawing group (NO2) a
slight decrease in the yield of the diaryl sulfide (Table 3, entry 7)
was observed. In the case of aryl iodide with a free amino group
the reaction proceeded without the need of a protecting group
and the desired product was obtained in good yields (Table 3, entry
11). It was observed that iodobenzene was more reactive. Conse-
quently, cross-coupling reactions with fluoro substituted aryl io-
dides exhibited an interesting chemo selectivity proceeding
exclusively at the iodo group (Table 3, entry 8). Utilizing optimized
conditions, the coupling process was investigated with several het-
ero aromatic iodides resulting in the corresponding diaryl sulfides
in impressive yields (Table 3, entries 13, 15, 16, and 18). In the case
of the reaction of aryl bromides and hetero aromatic bromides
with thiourea the process required longer reaction time to obtain
reasonable yield of diaryl sulfides (Table 3, entries 2, 6, 14, and 17).
This protocol was also applied for the cross-coupling reaction
between two different aryl halides by using iodobenzene and 4-
ethyliodobenzene and the corresponding symmetric products
were obtained in high yields when compared to unsymmetrical
sulfide (Scheme 2).
After each cycle, the reaction mixture was allowed to cool, and
the catalyst was recovered by simple centrifugation, washing with
ethyl acetate, acetone and then drying in vacuo. The recovered CuO
was used directly in the next cycle. The catalyst was found to be
recyclable without the loss of catalytic activity up to four cycles
(Table 4).
In conclusion, we have developed a recyclable CuO nanoparti-
cles catalyzed synthesis of symmetrical diaryl sulfides under li-
gand-free conditions in the absence of any additive. The reaction
employs a very simple catalyst system, having functional group
tolerance, and resulting in good to excellent yields. The advantages
of the novel and facile protocol are precluding volatile, foul smell-
ing, and toxic thiols as well as utilizing economically affordable,
recyclable and air stable catalyst under ligand-free conditions.
4. (a) Taniguchi, N. J. Org. Chem. 2004, 69, 6904; (b) Jammi, S.; Barua, P.; Rout, L.;
Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49, 1484; (c) Takagi, G.
Chem. Lett. 1986, 15, 1379–1380.
5. (a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517; (b) Chen, Y.-J.; Chen,
H.-H. Org. Lett. 2006, 8, 5609; (c) Taniguchi, N. J. Org. Chem. 2007, 72, 1241; (d)
Sperotto, E.; Klink, G. P. M. V.; De Vries, J. G.; Koten, G. V. J.Org. Chem. 2008, 73,
5625; (e) Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2008,
640; (f) Herrero, M. T.; SanMartin, R.; Domınguez, E. Tetrahedron 2009, 65,
1500; (g) Prasad, D. J. C.; Naidu, A. B.; Sekar, G. Tetrahedron Lett. 2009, 50, 1411;
(h) Wang, H.; Jiang, L.; Chen, T.; Li, Y. Eur. J. Org. Chem. 2010, 12, 2324; (i) She, J.;
Jiang, Z.; Wang, Y. Tetrahedron Lett. 2009, 50, 593; (j) Basu, B.; Mandal, B.; Das,
S.; Kundu, S. Tetrahedron Lett. 2009, 50, 5523; (k) Feng, Y.; Wang, H.; Sun, F.; Li,
Y.; Fu, X.; Jin, K. Tetrahedron 2009, 65, 9737; (l) Jogdand, N. R.; Shingate, B. B.;
Shingare, M. S. Tetrahedron Lett. 2009, 50, 6092; (m) Feng, Y.-S.; Li, Y.-Y.; Tang,
L.; Wu, W.; Xu, H.-J. Tetrahedron Lett. 2010, 51, 2489; (n) Bates, C. G.; Gujadhur,
R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803; (o) Savarin, C.; Srogl, J.;
Liebeskind, L. S. Org. Lett. 2002, 4, 4309; (p) Ranu, B. C.; Saha, A.; Jana, R. Adv.
Synth. Catal. 2007, 349, 2690; (q) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.;
Lee, C.-F. Chem. Commun. 2010, 46, 282; (r) Rout, L.; Sen, T. K.; Punniyamurthy,
T. Angew. Chem., Int. Ed. 2007, 46, 5583.
6. Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
7. Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189; (b)
Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697.
8. Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. Eur. J. Org. Chem.
2009, 5902.
9. Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
11. (a) Pacchioni, G. Surf. Rev. Lett. 2000, 7, 277; (b) Knight, W. D.; Clemenger, K.; de
Heer, W. A.; Saunders, W. A. M.; Chou, Y.; Cohen, M. L. Phys. Rev. Lett. 1984, 52,
2141; (c) Kaldor, A.; Cox, D.; Zakin, M. R. Adv. Chem. Phys. 1988, 70, 211.
12. (a) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189;
(b) Swapna, K.; Kumar, A. V.; Reddy, V. P.; Rao, K. R. .J. Org. Chem. 2009, 74,
7514; (c) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11,
951; (d) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Synlett 2009, 2783; (e)
Reddy, V. P.; Kumar, A. V.; Rao, K. R. Chem. Lett. 2010, 39, 212; (f) Reddy, V. P.;
Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2010, 51, 3181; (g) Swapna, K.;
Murthy, S. N.; Nageswar, Y. V. D. Eur. J. Org. Chem. 2010, 6, 678.
13. General procedure for the synthesis of aryl sulfides:
To a stirred solution of aryl halides (2.0 mmol) and thiourea (1.2 equiv) in dry
DMSO (2.0 mL) at rt was added nano CuO (5.0 mol %) followed by Cs2CO3
(2.0 equiv) and heated at 110 °C for 15 h. The progress of the reaction was
monitored by TLC. After the reaction was complete, the reaction mixture was
allowed to cool, and a 1:1 mixture of ethyl acetate/water (20 mL) was added.
The combined organic extracts were dried with anhydrous Na2SO4. The solvent
and volatiles were completely removed under vacuum to give the crude
product, which was purified by column chromatography on silica gel
(petroleum ether/ethyl acetate, 9:1) to afford the corresponding coupling
product in excellent yields.
Acknowledgment
We thank CSIR, New Delhi, for the award of fellowships.
Supplementary data
Supplementary data associated with this article can be found, in
Recycling of the catalyst: