B, bear substituents in a cis orientation at the C2 and C6
positions, whereas the third tetrahydropyran (C) has a trans
2,6-substitution pattern. This analysis pointed us toward a
synthesis strategy for 1 which foresaw two major subunits,
2 and 3, comprising C20-C32 and C9-C19, respectively,
emerging via a pathway that established the cis-2,6-disub-
stitution in each of the tetrahydropyrans A and B (Scheme
1). Specifically, we envisioned a reaction first described by
yielding and completely stereoselective synthesis of the
C20-C32 subunit from 2-methyloxazole-4-carboxaldehyde13
via hydroxy alkene 4 (Scheme 2). However, an excess of
Scheme 2. Synthesis of the C20-C32 Domain of 1 via
Palladium(II)-Mediated Alkoxycarbonylation
Scheme 1. Two of the Principal Subunits for Assembly into
Phorboxazole A
palladium(II) acetate was needed for complete conversion
of 4 to 5. Furthermore, the same conditions, when applied
to the synthesis of subunit 3, resulted in a low yield of the
tetrahydropyran.
A problem associated with alkoxycarbonylation of 4 and
6 is reduction of the palladium(II) reagent by carbon
monoxide to inactive palladium(0) during the course of the
reaction. To prevent this process, we investigated a variety
of conditions using a stoichiometric oxidant in the presence
of a catalytic quantity of a palladium(II) species. These
experiments carried out on 6 prepared from methyl 2-chloro-
methyloxazole-4-carboxylate14 showed that exposure of 6 to
catalytic palladium dichloride bis(acetonitrile) and excess
p-benzoquinone15 in methanol-acetonitrile under an atmo-
sphere of carbon monoxide afforded tetrahydropyran 7 in
58% isolated yield along with 15-20% of recoverable 6
(Scheme 3). The successful conversion of 6 to 7 by this
Semmelhack for the synthesis of tetrahydrofurans that em-
ployed palladium-mediated intramolecular alkoxycarbonyl-
ation of a hydroxy alkene.10
Our initial study of palladium(II)-mediated alkoxycarbonyl-
ation of a series of 6-hydroxy-1-octenes in methanol
demonstrated that cis-2,6-disubstituted tetrahydropyrans could
be prepared by this process but that yields were highly
dependent upon the orientation of substituents in the octene
chain.11 A subsequent investigation of palladium-mediated
intramolecular alkoxycarbonylation12 resulted in a high-
Scheme 3. Synthesis of the C9-C19 Portion of 1 via
Palladium(II)-Catalyzed Alkoxycarbonylation
(9) (a) Paterson, I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185. (b)
Paterson, I.; Luckhurst, C. A. Tetrahedron Lett. 2003, 44, 3749. (c) Paterson,
I.; Steven, A.; Luckhurst, C. A. Org. Biomol. Chem. 2004, 2, 3026. (d)
Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217. (e) Vitale, J.
P.; Wolckenhauer, S. A.; Do, N. M.; Rychnovsky, S. D. Org. Lett. 2005,
7, 3255. (f) Schaus, J. V.; Panek, J. S. Org. Lett. 2000, 2, 469. (g) Huang,
H.; Panek, J. S. Org. Lett. 2001, 3, 1693. (h) Wolbers, P.; Hoffmann, H.
M. R. Tetrahedron 1999, 55, 1905. (i) Wolbers, P.; Misske, A. M.;
Hoffmann, H. M. R. Tetrahedron Lett. 1999, 40, 4527. (j) Misske, A. M.;
Hoffmann, H. M. R. Tetrahedron 1999, 55, 4315. (k) Wolbers, P.;
Hoffmann, H. M. R. Synthesis 1999, 2291. (l) Wolbers, P.; Hoffmann, H.
M. R. Synlett 1999, 11, 1808. (m) Greer, P. B.; Donaldson, W. A.
Tetrahedron Lett. 2000, 41, 3801. (n) Greer, P. B.; Donaldson, W. A.
Tetrahedron 2002, 58, 6009. (o) Lucas, B. S.; Burke, S. D. Org. Lett. 2003,
5, 3915. (p) Lucas, B. S.; Luther, L. M.; Burke, S. D. Org. Lett. 2004, 6,
2965. (q) Lucas, B. S.; Luther, L. M.; Burke, S. D. J. Org. Chem. 2005,
70, 3757. (r) Brinkmann, Y.; Carreno, M. C.; Urbano, A.; Colobert, F.;
Solladie, G. Org. Lett. 2004, 6, 4335. (s) Chakraborty, T. K.; Reddy, V.
R.; Reddy, T. J. Tetrahedron 2003, 59, 8613. (t) Yadav, J. S.; Rajaiah, G.
Synlett 2004, 1537. (u) Yadav, J. S.; Prakash, S. J.; Gangadhar, Y.
Tetrahedron: Asymmetry 2005, 16, 2722.
means enabled us to employ this tetrahydropyran subunit in
a continuation of our route toward 1.
Construction of tetrahydropyran C of 1 required a subunit
which, when reacted with 7, would afford a masked 1,5-
diol that could be cyclized to the 2,6-trans configuration of
(11) White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1999, 40,
1463.
(12) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Lett. 2001, 3,
4003.
(13) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Synth. 2002,
79, 244.
(14) Cardwell, K. S.; Hermitage, S. A.; Sjolin, A. Tetrahedron Lett. 2000,
41, 4239.
(15) Marshall, J. A.; Yanik, M. M. Tetrahedron Lett. 2000, 41, 4717.
(10) Semmelhack, M. F.; Zhang, N. J. Org. Chem. 1989, 54, 4483.
6040
Org. Lett., Vol. 8, No. 26, 2006