9580
F. M. Ibatullin, S. I. Seli6ano6 / Tetrahedron Letters 43 (2002) 9577–9580
11. (a) Farkas, J.; Szabo´, I. F.; Bogna´r, R.; Anderle, D.
Carbohydr. Res. 1976, 48, 136–138; (b) Exoffier, G.;
Paillet, M.; Vignon, M. Carbohydr. Res. 1984/1985, 135,
C10–C11; (c) Kartha, K. P. R.; Jennings, H. Tetrahedron
Lett. 1990, 31, 2537–2540; (d) Kova´c, P.; Edgar, K. J. J.
Org. Chem. 1992, 57, 2455–2467.
12. Chittenden, G. J. F. Carbohydr. Res. 1992, 242, 297–301.
13. (a) Wolfrom, M. L.; Groebke, W. J. Org. Chem. 1963,
28, 2986–2988; (b) Wolfrom, M. L.; Garg, H. G.; Hor-
ton, D. J. Org. Chem. 1963, 28, 2989–2991; (c) Horton,
D.; Wolfrom, M. L.; Garg, H. G. J. Org. Chem. 1963, 28,
2992–2995.
14. (a) Kartha, K. P. R.; Field, R. A. Tetrahedron Lett. 1997,
38, 8233–8236; (b) Kartha, K. P. R.; Cura, P.; Aloui, M.;
Readman, S. K.; Rutherford, T. J.; Field, R. A. Tetra-
hedron: Asymmetry 2000, 11, 581–593.
15. Sugiyama, S.; Diakur, J. M. Org. Lett. 2000, 2, 2713–
2715.
16. Ibatullin, F. M.; Shabalin, K. A. Carbohydr. Lett. 2000,
3, 427–429.
17. Espinosa, F. G. Acta Salmanticensia. Ser. Cienc. 1958, 2,
53; Chem Abstr. 1959, 53, 16973h.
18. (a) Fox, J. J.; Goodman, I. J. Am. Chem. Soc. 1951, 73,
3256–3260; (b) Austin, P. W.; Hardy, F. E.; Buchanan, J.
G.; Baddiley, J. J. Chem. Soc. 1964, 2128–2137.
19. (a) Brigl, P. Z. Physiol. Chem. 1921, 116, 1; (b) Brigl, P.;
Mistele, P. Z. Physiol. Chem. 1923, 126, 120–129; (c)
Lemieux, R. U.; Huber, G. Can. J. Chem. 1953, 31,
1040–1047; (d) Lemieux, R. U.; Howard, J. Methods
Carbohydr. Chem. 1963, 2, 400–402; (e) Saito, S.; Ichi-
nose, K.; Sasaki, Y.; Sumita, S. Chem. Pharm. Bull. 1992,
40, 3261–3268.
(300 MHz, CDCl3): l 5.78 (m, 1H, H–1), 5.05–4.97 (m,
2H, H–2, H–3), 4.86 (m, 1H, J4,5a=3.0 Hz, J4,5b=3.7 Hz,
H–4), 4.36 (dd, 1H, J5a,5b=12.9 Hz, H–5a), 3.76 (dd, 1H,
H–5a), 2.10, 2.099, 2.096 (3 × s, 9H, 3 × Ac); 13C NMR
(75 MHz, CDCl3): l 169.7, 169.2, 169.0 (3 × CO-Ac),
88.5 (C-1), 70.1, 67.3, 66.8 (C-2, C-3, C-4), 61.5 (C-5),
20.75, 20.7, 20.6 (3 × CH3-Ac).
2,3,4,6-tetra-O-Acetyl-b-D
-glucopyranosyl chloride, 1H
NMR (500 MHz, CDCl3): l 5.28 (d, 1H, J1,2=8.2 Hz,
H–1), 5.20–5.12 (m, 3H, J4,5=9.7 Hz, H–2, H–3, H–4),
4.24 (dd, 1H, J6a,6b=12.5 Hz, H–6a), 4.15 (dd, 1H, H–6b),
3.80 (ddd, 1H, J5,6a=4.7 Hz, J5,6b=2.3 Hz, H–5), 2.08,
2.06, 2.01, 1.99 (4s, 4 × 3H, 4 × Ac); 13C NMR (125
MHz, CDCl3): l 170.5, 170.0, 169.2, 169.0 (4 × CO-Ac),
87.5 (C-1), 75.5 (C-5), 73.3 (C-3), 72.7 (C-2), 67.5 (C-4),
61.5 (C-6), 20.6, 20.5, 20.4 (4 × CH3-Ac).
2,3,4,6-tetra-O-Acetyl-b-D
-galactopyranosyl chloride, 1H
NMR (300 MHz, CDCl3): l 5.41 (dd, 1H, J4,5=1 Hz,
H–4), 5.36 (dd, 1H, J2,3=10.1 Hz, H–2), 5.24 (d, 1H,
J1,2=8.8 Hz, H–1), 4.99 (dd, 1H, J3,4=3.4 Hz, H–3), 4.14
(d, 2H, H–6a,b), 4.01 (td, 1H, J5,6a=J5,6b=6.4 Hz, H–5),
2.16, 2.07, 2.04, 1.97 (4s, 4 × 3H, 4 × Ac); 13C NMR (75
MHz, CDCl3): l 170.3, 170.0, 169.8, 169.1 (4 × CO-Ac),
88.1 (C-1), 74.5, 70.8, 70.6, 66.7 (C-2, C-3, C-4, C-5), 61.2
(C-6), 20.6, 20.5, 20.4 (4 × CH3-Ac).
2,3,6-tri-O-Acetyl-(2,3,4,6-tetra-O-acetyl-a-D-glucopyran-
osyl)-b-D-glucopyranosyl chloride (2,3,6,2%,3%,4%,6%-hepta-
O-acetyl-b-maltosyl chloride), 1H NMR (500 MHz,
CDCl3): l 5.39 (d, 1H, J1%,2%=4.0 Hz, H–1%), 5.36 (d, 1H,
J
1,2=8.0 Hz, H–1), 5.33 (dd, 1H, J3%,4%=9.8 Hz, H–3%),
5.19 (dd, 1H, J3,4=8.6 Hz, H–3), 5.03 (dd, 1H, J4%,5%
=
10.0 Hz, H–4%), 4.98 (dd, 1H, J2,3%=8.3 Hz, H–2), 4.83
(dd, 1H, J2%,3%=10.5 Hz, H–2%), 4.49 (dd, 1H, J6a,6b=12.4
Hz, H–6a), 4.22 (dd, 1H, J6%a,6%b=12.4 Hz, H–6%a), 4.21
(dd, 1H, H–6b), 4.12 (dd, 1H, J4,5=9.7 Hz, H–4), 4.04
(dd, 1H, H–6%b), 3.94 (ddd, 1H, J5%,6%a=3.9 Hz, J5%,6%b=2.3
Hz, H–5%), 3.81 (ddd, 1H, J5,6a=2.7 Hz, J5,6b=4.6 Hz,
H–5), 2.14, 2.08, 2.05, 2.02, 2.01, 2.00, 1.98 (7s, 7 × 3H,
7 × Ac); 13C NMR (125 MHz, CDCl3): l 170.43, 170.4,
170.3, 170.0, 169.9, 169.3, 169.2 (7 × CO-Ac), 95.8 (C-1%),
87.2 (C-1), 75.5, 75.3, 74.2, 72.2, 70.0, 69.2, 68.6, 68.0
(C-2, C-2%, C-3, C-3%, C-4, C-4%, C-5, C-5%), 62.5, 61.5
(C-6, C-6%), 20.77, 20.71, 20.6, 20.5, 20.49, 20.48, 20.46
(7 × CH3-Ac).
20. (a) Van Wazer, J. R. Phosphorus and its Compounds; New
York: Wiley, 1958; Vol. 1; (b) Corbridge, D. E. C.
Phosphorus. An Outline of its Chemistry Biochemistry and
Technology; 2nd ed.; Elsevier: Amsterdam-Oxford-New
York, 1980.
+
21. PCl4 ion has been postulated as a reactive intermediate
in some PCl5 involving reactions: (a) Kirsanov, A. V.;
Molosnova, V. P. Zh. Obshch. Khim. 1958, 28, 30–35;
Chem. Abstr. 1958, 52, 12760b; (b) Newman, M. S.;
Wood, L. L., Jr. J. Am. Chem. Soc. 1959, 81, 4300–4303.
22. (a) Fialkov, Y. A.; Buryanov, Y. B. Docl. Akad. Nauk
SSSR 1953, 92, 585–588; Chem. Abstr. 1954, 48, 5708c;
(b) Weygand-Hilgetag, Organish-Chemische Experimen-
tierkunst, 3rd ed., Johann Ambrosius Barth Verlag:
Leipzig, 1964.
The same compound was prepared using method B.
Although the crude product, isolated in 92% yield, was
sufficiently pure, it was recrystallized from ether–hexane
to give the sample with satisfactory elemental analysis
(yield 83%).
23. Fischer, H.; Schwarz, A Ann. 1934, 512, 239–249.
24. All synthesized compounds gave satisfactory elemental
1
analyses and were identified by optical rotations, H, 13C
25. The NMR data is presented using the convention fol-
lowed in Carbohydrate Research, (see Instructions to
Authors).
NMR, EI–MS spectroscopy. Selected spectral data:25
2,3,4-tri-O-acetyl-b-D
-xylopyranosyl chloride, 1H NMR