C O M M U N I C A T I O N S
Table 3. Indium-Mediated Reactions of Aldehydes with
Scheme 4
Trialkylsilyl Propargyl Bromidesa
R ) TIPS
yield % (8:9)
R ) TBDPS
yield % (8:9)
entry
aldehyde
1
2
3
4
5
nonyl aldehyde
hydrocinnamaldehyde
cinnamaldehyde
cyclohexanecarbaldehyde
benzaldehyde
52 (95:5)
71 (93:7)
46 (92:8)
61 (95:5)
59 (96:4)
a
b
c
d
e
45 (95:5)
50 (90:10)
52 (97:3)
56 (95:5)
55 (96:4)
f
g
h
i
j
to the steric repulsion of indium complex (which complexes to water
molecules) with the bulky silicon group.
a All reactions were carried out on 0.25 mmol scale with aldehyde:
trialkylsilylpropargyl bromide:indium ) 1:2:2. b Isolated yield.
In conclusion, we have developed a general strategy to obtain
either the allenic alcohols or homopropargylic alcohols in high
regioselectivities via the indium-mediated reaction of trialkylsilyl
propargyl bromides with various aldehydes. This method is
extremely easy. By just changing the silyl group and the reaction
conditions, both the allenic and homopropargylic alcohols can be
obtained in high regioselectivities. Furthermore, mechanistic studies
have revealed that silicon plays an important role in the high
regioselectivities. These studies pave the way for the design of an
enantioselective version for the synthesis of allenic alcohols and
homopropargylic alcohols. Further application of this concept to
the control stereochemistry in other systems is in progress.
the reaction longer afforded only the homopropargylic alcohols.
(3) It is important to note that two equivalent of propargyl bromide
was necessary to obtain high selectivity. (4) A cross-over experiment
was carried out as shown in Scheme 3. After the reaction, column
chromatography provided the crossover product 5c in 35% yield
in addition to the indium-coupling product. (5) Stereochemical
studies using steroidal aldehyde with trimethylsilyl propargyl
bromide and indium/indium trifluoride in THF resulted in the
formation of the Cram’s product.9 (6) No allenic product was
obtained with the reaction of homopropargyl alcohol and aldehydes.
Scheme 3
Acknowledgment. We are grateful to National University of
Singapore for their generous financial support. We thank Professor
E. J. Corey for helpful discussion and Professor Milan Stojanovic
for proof reading the manuscript.
Supporting Information Available: Spectroscopic and analytical
data for all compounds and the representative procedure (PDF). This
References
(1) For reviews, see: (a) Yamamoto, H. In ComprehensiVe Organic Synthesis;
Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, Chapter
1.3, pp 81-98. (b) Panek, J. S. In ComprehensiVe Organic Synthesis;
Schreiber, S. L., Ed.; Pergamon: Oxford, 1991, Vol. 1, p 595 and
references therein.
(2) (a) Miao, W.; Chan, T. H. Synthesis 2003, 5, 785. (b) Reddy, L. R.; Gais,
H. J.; Woo, C. W.; Raabe, G. J. Am. Chem. Soc. 2002, 124, 10427. (c)
Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem.
Soc. 2001, 123, 12095. (d) Denmark, S. E.; Wynn, T. J. Am. Chem. Soc.
2001, 123, 6199. (e) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1999,
64, 5201. (f) Ogoshi, S.; Fukunishi, Y.; Tsutsumi, K.; Kurosawa, H. Chem.
Commun. 1995, 2485. (g) Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa,
E. AdV. Organoment. Chem. 1995, 37, 39. (h) Tsuji, J.; Mandai, T. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2589. (i) Hoffmann, R. W.; Lanz, J.;
Metternich, R.; Tarava, G.; Hoppe, D. Angew. Chem., Int. Ed. Engl. 1987,
26, 1145. (j) Daniels, R. G.; Paquette, L. A. Tetrahedron Lett. 1981, 22,
1579.
(3) (a) Isaac, M. B.; Chan, T. H. Chem. Commun. 1995, 1003. (b) Ishiguro,
M.; Ikeda, N.; Yamamoto, H. J. Org. Chem. 1982, 47, 2225.
(4) Yi, X. H.; Meng, Y.; Hua, X. G.; Li, C. J. J. Org. Chem. 1998, 63, 7472.
(5) Loh, T. P.; Xu, K. C.; Ho, D. S. C.; Sim, K. Y. Synlett 1998, 4, 369.
(6) Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999, 121, 3229.
(7) Nokami, J.; Tamaoka, T.; Koguchi, T.; Okawara, R. Chem. Lett. 1984,
1939.
All these suggest that silicon may be playing a key role in this
reaction, most probably facilitating the retro cleavage of allenic
alcohol or/and shifting the equilibrium of the indium species toward
the formation of species 12 due to the coordination with the halogen
of the indium (Scheme 4). The preferential formation of species
12 coupled with the retro cleavage of the allenic alcohol to form
the aldehyde10 which further reacts with the excess organoindium
reagent resulted in the selective formation of the thermodynamically
more stable homopropargylic alcohols.
On the other hand, the indium species generated in aqueous
media using more bulky silicon will preferentially form species 13
which reacts with aldehydes to form the kinetically favored allenic
alcohols. The preferential formation of species 13 is probably due
(8) Hammond, G. B.; Wang, Z. G. J. Org. Chem. 2000, 65, 6547.
(9) (a) Hershberg, E. B.; Oliveto, E. P.; Gerold, C.; Johnson, L. J. Am. Chem.
Soc. 1951, 73, 5073. (b) Loh T. P.; Hu, Q. Y.; Chok, Y. K.; Tan, K. T.
Tetrahedron Lett. 2001, 42, 9277.
(10) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe,
Y.; Mitsudo, T. J. Am. Chem. Soc. 1998, 120, 5587.
JA037410I
9
J. AM. CHEM. SOC. VOL. 125, NO. 43, 2003 13043