(18)
(19)
(20)
Jagerovic, N.; Fernandez-Fernandez, C.; Goya, P. CB1 Cannabinoid
Antagonists: Structure-Activity Relationships and Potential
Therapeutic Applications. Curr. Top. Med. Chem. 2008, 8 (3), 205–
Lange, J. H. M.; Kruse, C. G. Keynote Review: Medicinal
Chemistry Strategies to CB1 Cannabinoid Receptor Antagonists.
Drug Discov. Today 2005, 10 (10), 693–702.
Appendix A. Supplementary data
Supplementary data to this article can be found online at
References
(1)
(2)
(3)
(4)
Katona, I.; Freund, T. F. Multiple Functions of Endocannabinoid
Signaling in the Brain. Annu. Rev. Neurosci. 2012, 35 (1), 529–558.
Kreitzer, F. R.; Stella, N. The Therapeutic Potential of Novel
Cannabinoid Receptors. Pharmacol. Ther. 2009, 122 (2), 83–96.
Robson, P. J. Therapeutic Potential of Cannabinoid Medicines.
Drug Test. Anal. 2014, 6 (1–2), 24–30.
Grimsey, N. L.; Goodfellow, C. E.; Scotter, E. L.; Dowie, M. J.;
Glass, M.; Graham, E. S. Specific Detection of CB1 Receptors;
Cannabinoid CB1 Receptor Antibodies Are Not All Created Equal!
J. Neurosci. Methods 2008, 171 (1), 78–86.
Zhang, Y.; Gilliam, A.; Maitra, R.; Damaj, M. I.; Tajuba, J. M.;
Seltzman, H. H.; Thomas, B. F. Synthesis and Biological
Evaluation of Bivalent Ligands for the Cannabinoid 1 Receptor. J.
Med. Chem. 2010, 53 (19), 7048–7060.
(21)
Le Naour, M.; Akgün, E.; Yekkirala, A.; Lunzer, M. M.; Powers,
M. D.; Kalyuzhny, A. E.; Portoghese, P. S. Bivalent Ligands That
Target μ Opioid (MOP) and Cannabinoid1 (CB1) Receptors Are
Potent Analgesics Devoid of Tolerance. J. Med. Chem. 2013, 56
Perrey, D. A.; Gilmour, B. P.; Thomas, B. F.; Zhang, Y. Toward the
Development of Bivalent Ligand Probes of Cannabinoid CB1 and
Orexin OX1 Receptor Heterodimers. ACS Med. Chem. Lett. 2014, 5
Seltzman, H. H.; Carroll, F. I.; Burgess, J. P.; Wyrick, C. D.; Burch,
D. F. Synthesis, Spectral Studies and Tritiation of the Cannabinoid
Antagonist SR141716A. J. Chem. Soc. Chem. Commun. 1995,
1549–1550. https://doi.org/10.1039/C39950001549.
Fernández-Fernández, C.; Decara, J.; Bermúdez-Silva, F. J.;
Sánchez, E.; Morales, P.; Gómez-Cañas, M.; Gómez-Ruíz, M.;
Callado, L. F.; Goya, P.; Rodríguez de Fonseca, F.; et al.
Description of a Bivalent Cannabinoid Ligand with Hypophagic
Properties. Arch. Pharm. (Weinheim) 2013, 346 (3), 171–179.
https://doi.org/10.1002/ardp.201200392.
Fernández-Fernández, C.; Callado, L.F.; Girón, R.; Sánchez, E.;
Erdozain, A. M.; López-Moreno, J. A.; Morales, P.; Rodriguez de
Fonseca, F.; Fernández-Ruiz, J.; Goya, P.; Meana, J. J.; Martin, M.
I.; Jagerovic, N. Combining Rimonabant and Fentanyl in a Single
Entity: Preparation and Pharmacological Results. Drug Des. Devel.
Hurst, D. P.; Schmeisser, M.; Reggio, P. H. Endogenous Lipid
Activated G Protein-Coupled Receptors: Emerging Structural
Features from Crystallography and Molecular Dynamics
Simulations. Chem. Phys. Lipids 2013, 169, 46–56.
(22)
(23)
(24)
(5)
Daly, C.; Ross, R.; Whyte, J.; Henstridge, C.; Irving, A.; McGrath,
J. Fluorescent Ligand Binding Reveals Heterogeneous Distribution
of Adrenoceptors and ‘Cannabinoid-like’ Receptors in Small
Arteries. Br. J. Pharmacol. 2010, 159 (4), 787–796.
(6)
(7)
Hiller, C.; Kühhorn, J.; Gmeiner, P. Class A G-Protein-Coupled
Receptor (GPCR) Dimers and Bivalent Ligands. J. Med. Chem.
Glass, M.; Govindpani, K.; Furkert, D. P.; Hurst, D. P.; Reggio, P.
H.; Flanagan, J. U. One for the Price of Two…Are Bivalent
Ligands Targeting Cannabinoid Receptor Dimers Capable of
Simultaneously Binding to Both Receptors? Trends Pharmacol. Sci.
Glass, M.; Felder, C. C. Concurrent Stimulation of Cannabinoid
CB1 and Dopamine D2 Receptors Augments CAMP Accumulation
in Striatal Neurons: Evidence for a Gs Linkage to the CB1
Receptor. J. Neurosci. 1997, 17 (14), 5327–5333.
(25)
(8)
(26)
(27)
(28)
Khan, S. S.; Lee, F. J. S. Delineation of Domains Within the
Cannabinoid CB1 and Dopamine D2 Receptors That Mediate the
Formation of the Heterodimer Complex. J. Mol. Neurosci. 2014, 53
Kearn, C. S.; Blake-Palmer, K.; Daniel, E.; Mackie, K.; Glass, M.
Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2
Receptors Enhances Heterodimer Formation: A Mechanism for
Receptor Cross-Talk? Mol. Pharmacol. 2005, 67 (5), 1697–1704.
(9)
Hurst, D. P.; Grossfield, A.; Lynch, D. L.; Feller, S.; Romo, T. D.;
Gawrisch, K.; Pitman, M. C.; Reggio, P. H. A Lipid Pathway for
Ligand Binding Is Necessary for a Cannabinoid G Protein-Coupled
Receptor. J. Biol. Chem. 2010, 285 (23), 17954–17964.
(10)
Francisco, M. E. Y.; Seltzman, H. H.; Gilliam, A. F.; Mitchell, R.
A.; Rider, S. L.; Pertwee, R. G.; Stevenson, L. A.; Thomas, B. F.
Synthesis and Structure−Activity Relationships of Amide and
Hydrazide Analogues of the Cannabinoid CB1 Receptor Antagonist
N-(Piperidinyl)- 5-(4-Chlorophenyl)-1-(2,4-Dichlorophenyl)-4-
Methyl-1H-Pyrazole-3-Carboxamide (SR141716). J. Med. Chem.
Thomas, B. F.; Francisco, M. E. Y.; Seltzman, H. H.; Thomas, J. B.;
Fix, S. E.; Schulz, A.-K.; Gilliam, A. F.; Pertwee, R. G.; Stevenson,
L. A. Synthesis of Long-Chain Amide Analogs of the Cannabinoid
CB1 Receptor Antagonist N-(Piperidinyl)-5-(4-Chlorophenyl)-1-
(2,4-Dichlorophenyl)-4-Methyl-1H-Pyrazole-3-Carboxamide
(SR141716) with Unique Binding Selectivities and Pharmacological
Activities. Bioorg. Med. Chem. 2005, 13 (18), 5463–5474.
(11)
Glass, M.; Faull, R. L. M.; Dragunow, M. Cannabinoid Receptors in
the Human Brain: A Detailed Anatomical and Quantitative
Autoradiographic Study in the Fetal, Neonatal and Adult Human
Brain. Neuroscience 1997, 77 (2), 299–318.
(12)
(13)
(14)
Cohen, C.; Perrault, G.; Voltz, C.; Steinberg, R.; Soubrié, P.
SR141716, a Central Cannabinoid (CB1) Receptor Antagonist,
Blocks the Motivational and Dopamine-Releasing Effects of
Nicotine in Rats. Behav. Pharmacol. 2002, 13 (5–6), 451–463.
Pickel, V. M.; Chan, J.; Kearn, C. S.; Mackie, K. Targeting
Dopamine D2 and Cannabinoid-1 (CB1) Receptors in Rat Nucleus
Accumbens. J. Comp. Neurol. 2006, 495 (3), 299–313.
https://doi.org/10.1002/cne.20881.
(29)
Vernall, A. J.; Hill, S. J.; Kellam, B. The Evolving Small-Molecule
Fluorescent-Conjugate Toolbox for Class A GPCRs. Br. J.
Pharmacol. 2014, 171 (5), 1073–1084.
(30)
(31)
(32)
Wiley, J. L.; Selley, D. E.; Wang, P.; Kottani, R.; Gadthula, S.;
Mahadeven, A. 3-Substituted Pyrazole Analogs of the Cannabinoid
Type 1 (CB1) Receptor Antagonist Rimonabant: Cannabinoid
Agonist-Like Effects in Mice via Non-CB1, Non-CB2 Mechanism.
J. Pharmacol. Exp. Ther. 2012, 340 (2), 433–444.
https://doi.org/10.1111/bph.12265.
(15)
(16)
Morphy, R.; Rankovic, Z. Designed Multiple Ligands. An
Emerging Drug Discovery Paradigm. J. Med. Chem. 2005, 48 (21),
Bakthavachalam, V.; Baindur, N.; Madras, B. K.; Neumeyer, J. L.
Fluorescent Probes for Dopamine Receptors: Synthesis and
Characterization of Fluorescein and 7-Nitrobenz-2-Oxa-1,3-Diazol-
4-Yl Conjugates of D-1 and D-2 Receptor Ligands. J. Med. Chem.
Soriano, A.; Ventura, R.; Molero, A.; Hoen, R.; Casadó, V.; Cortés,
A.; Fanelli, F.; Albericio, F.; Lluís, C.; Franco, R.; et al. Adenosine
A2A Receptor-Antagonist/Dopamine D2 Receptor-Agonist
Bivalent Ligands as Pharmacological Tools to Detect A2A-D2
Receptor Heteromers. J. Med. Chem. 2009, 52 (18), 5590–5602.
Sasmal, P. K.; Reddy, D. S.; Talwar, R.; Venkatesham, B.;
Balasubrahmanyam, D.; Kannan, M.; Srinivas, P.; Kumar, K. S.;
Devi, B. N.; Jadhav, V. P.; et al. Novel Pyrazole-3-Carboxamide
Derivatives as Cannabinoid-1 (CB1) Antagonists: Journey from
Non-Polar to Polar Amides. Bioorg. Med. Chem. Lett. 2011, 21 (1),
Tu, G.; Xiong, F.; Huang, H.; Kuang, B.; Li, S. Design, Synthesis
and Biological Evaluation of CB1 Cannabinoid Receptor Ligands
Derived from the 1,5-Diarylpyrazole Scaffold. J. Enzyme Inhib.
(17)