at 278 °C under argon, and the resulting orange solution of the ATPH–
benzaldehyde complex was stirred at this temperature for 10 min. A solution
of phenyldimethylsilyllithium (0.35 mol dm23 in THF, 2.86 cm3, 1.0 mmol)
was added at 278 °C, and the reaction mixture was stirred at this
temperature for 30 min. The reaction was quenched with concentrated
hydrochloric acid (12 mol dm23; 1.5 cm3) at 278 °C, stirred at room
temperature for 15 min, diluted with water (4.5 cm3) and extracted with
diethyl ether (3 3 15 cm3). The organic layer was dried (Na2SO4) and
concentrated. The residue was purified by column chromatography on silica
gel (CH2Cl2–hexane to give the 1,6-adduct 2a (59% isolated). Selected data
for 2a: Rf = 0.35 (CH2Cl2–hexane, 1:2); nmax (film)/cm21 1682, 1250,
1115. dH (CDCl3, 300 MHz) 9.22 (1 H, s, CHO), 7.55–7.30 (5 H, m, SiCPh),
6.44 (1 H, t, J 5.6, SiCHCH2CH), 6.28 (1 H, d, J 9.6, SiCHCHCH), 5.92 (1
H, dd, J 5.2 and 9.6, SiCHCH), 2.77 (1 H, ddd, J 3.9, 10.8 and 18.9,
CHAHB), 2.48 (1 H, ddd, J 5.7, 5.7 and 18.9, CHAHB), 2.07 (1 H, m, SiCH),
0.32 (6 H, s, SiMe2); dC(CDCl3) 190.7, 145.7, 138.2, 136.6, 133.8, 131.1,
129.3, 127.8, 116.6, 24.5, 23.9, 24.8 and 25.0 (Found: C, 74.2; H, 7.6.
C15H18OSi requires C, 74.3; H, 7.5%).
OMe
O–
OMe
O–
CO2Me
i
+
PhMe2Si
SiMe2Ph
8
ii
CO2Me
CO2Me
+
CO2Me
+
PhMe2Si
PhMe2Si
SiMe2Ph
9a
9c
9b
cis : trans 1: 3.1
(9a+9b+9c 70%, 9a:9b:9c 52:35:13)
CO2Me
Me
CO2Me
Me
iii
8
+
§ Selected data for 3b: Rf = 0.28 (CH2Cl2–hexane, 4:1); nmax(film)/cm21
1671(CNO), 1612 (conjugated CNC) and 1239 (C–Si); dH(CDCl3, 250
MHz) 7.50–7.26 (5 H, m, SiPh), 6.63 (1 H, ddd, J 1.25, 2.5 and 5.7,
CHNCCO), 5.75 (1 H, ddd, J 2.9, 5.2 and 9.6, CHNCHCHSi), 5.44 (1 H, br
dd, J 4.6 and 9.6, CHNCHCHSi), 3.23 (1 H, dt, J 3.6 and 5.7, CHSi), 2.73
(1 H, dddd, J 4.5, 4.7, 4.7 and 23, CHAHB, equatorial), 2.39 (1 H, dddd, J
22.9, 8.8, 2.6 and 2.6, CHAHB, axial), 2.24 (3 H, s, MeCO), 0.24 (6 H, s,
SiMe2); dC(CDCl3) 198.2, 140.8, 135.4, 134.5, 134.2, 129.4, 128.2, 127.8,
119.7, 30.03, 29.5, 25.6, 23.2 and 24.2 (Found: M+, 256.1280. C16H20OSi
requires M, 256.1283).
PhMe2Si
PhMe2Si
cis-10
trans-10
51% >95 : 5
iv
H
HO
H
OH
Me
Me
+
Me
Me
Si
PhMe2Si
Ph
cis-11
trans-11
References
Scheme 3 Reagents and conditions: i, ATPH, toluene, PhMe2SiLi, 278 °C,
30 min; ii, conc. HCl, 278 °C to room temp.; iii, MeOSO2CF3 (10 equiv.),
278 °C, 1 h; iv, DIBAL-H, 0 °C
1 E. W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981,
ch. 9; W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-
Verlag, 1983, ch. 11; I. Fleming, J. Dunogue`s and R. Smithers, Org.
React. (N.Y.), 1989, 37, 57.
2 T. K. Sarkar, Synthesis, 1990, 969 and 1101; I. Fleming, in Compre-
hensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon,
Oxford, 1991, vol. 2, ed. C. H. Heathcock, ch. 2.2, pp. 563–593.
Allylsilanes derived by silylation of allyl-metal species: M. C. Henry and
J. G. Nortes, J. Am. Chem. Soc., 1960, 82, 555; V. F. Mironov and
V. V. Nepomnina, Izv. Akad. Nauk SSSR, Ser. Khim., 1960, 1419 (Chem.
Abstr., 1961, 55, 358); J.-P. Pillot, J. Dunogue`s and R. Calas,
Tetrahedron Lett., 1976, 1871. Allylsilanes derived from silylmethyl
anions: K. Ito, M. Fukui and Y. Kurachi, J. Chem. Soc., Chem. Commun.,
1977, 500; D. Seyferth, K. R. Wursthorn and R. E. Mammarella, J. Org.
Chem., 1977, 42, 3104. Allylsilanes derived by nucleophilic allylic
substitutions with silyl anions: I. Fleming and D. Marchi, Synthesis, 1981,
560; I. Fleming, D. Higgins, N. J. Lawrence and A. P. Thomas, J. Chem.
Soc., Perkin Trans. 1, 1992, 3331; J. G. Smith, S. E. Drozda,
S. P. Petraglia, N. R. Quinn, E. M. Rice, B. S. Taylor and M.
Viswanathan, J. Org. Chem., 1984, 49, 4112. Allylsilanes from
b-silylcarbonyl compounds: I. Fleming, S. Gil, A. K. Sarkar and
T. Schmidlin, J. Chem. Soc., Perkin Trans. 1, 1992, 3351.
COR
COR
i, ii
+
12a >12%
14%
b
SiMe2Ph
12a R = H
b R = Me
13a 74%
b 64%
COMe
COMe
iv or iv, v
iii, ii
SiPh2
SiPh2
X
14 38%
15a X = F 71%
b X = OH 41%
3 K. Maruoka, M. Ito and H. Yamamoto, J. Am. Chem. Soc., 1995, 117,
9091; S. Saito and H. Yamamoto, Chem. Commun., in the press.
4 Preparation of silyl-lithium species: W. C. Still, J. Org. Chem., 1976, 41,
3063; H. Gilman and G. D. Lichtenwalter, J. Am. Chem. Soc., 1958, 80,
608; R. Balasubramanian and J. P. Oliver, J. Organomet. Chem., 1980,
197, C7; G. Gutekunst and A. G. Brook, J. Organomet. Chem., 1982, 225,
1.
Scheme 4 Reagents and conditions: i, ATPH, toluene, PhMe2SiLi, 278 °C;
ii, conc. HCl, 278 °C to room temp.; iii, ATPH, toluene, 2-methylbut-
2-enyldiphenylsilyllithium, 278 °C; iv, BF3·AcOH, CH2Cl2, 210 °C; v,
KF, H2O2, MeOH–THF, 0 °C
5 D. J. Ager, I. Fleming and S. K. Patel, J. Chem. Soc., Perkin Trans. 1,
1981, 2520; I. Fleming, T. W. Newton and F. Roessler, J. Chem. Soc.,
Perkin Trans. 1, 1981, 2527; I. Fleming, R. Roberts and S. C. Smith,
Tetrahedron Lett., 1996, 37, 9395.
6 H.-F. Chow and I. Fleming, J. Chem. Soc., Perkin Trans. 1, 1984, 1815;
I. Fleming, N. L. Reddy, K. Takaki and A. C. Ware, J. Chem. Soc., Chem.
Commun., 1987, 1472; I. Fleming and S. K. Ghosh, J. Chem. Soc., Chem.
Commun., 1994, 2285.
silyl fluoride 15a in 71% yield. Subsequent treatment under
Tamao’s conditions8 with potassium fluoride and hydrogen
peroxide in THF–MeOH produced hydroxy silane 15b in fair
yield, but not the naphthalene hydrate (Scheme 4). A method for
efficiently transforming the silyl group into a hydroxy group is
still under investigation.
7 I. Fleming and S. B. D. Winter, Tetrahedron Lett., 1993, 37, 7287; 1995,
36, 1733; I. Fleming and D. Lee, Tetrahedron Lett., 1996, 38, 6929.
8 K. Tamao, N. Ishida, T. Tanaka and M. Kumada, Organometallics, 1983,
2, 1694; K. Tamao and N. Ishida, J. Organomet. Chem., 1984, 269, C37;
K. Tamao, M. Kumada and K. Maeda, Tetrahedron Lett., 1984, 25, 321;
K. Tamao, N. Ishida, Y. Ito and M. Kumada, Org. Synth. (N.Y.), 1990, 69,
96.
We thank the Ministry of Culture, Science, Education and
Sports of Japan and the Basque Government for providing
financial support.
Footnotes
† E-mail: j45988a@nucc.cc.nagoya-u.ac.jp
‡ Typical experimental procedure: benzaldehyde (51 3 1023 cm3, 0.5
mmol) was added to a solution of ATPH (0.55 mmol) in toluene (4.0 cm3)
Received in Cambridge, UK, 21st April 1997; Com. 7/02684F
1300
Chem. Commun., 1997