G. Thoma et al. / Bioorg. Med. Chem. Lett. 11 (2001) 923–925
925
It is worthwhile to mention that this rather simple pro-
References and Notes
tecting group manipulation turned out to be the most
critical step in the whole synthesis. Next, the amine
protecting group was removed using catalytic quantities
of Pd(PPh3)4 (0.1 equiv) in THF in the presence of
morpholine (30 equiv). The corresponding amine was
isolated in 96% yield. Treatment with active ester 13
(2.5 equiv) in a mixture of DMF/2,6-lutidine (5:1) at
80 ꢂC for 16 h gave benzamide 14 in 93% yield. Galac-
tose was introduced activating a mixture of 14, selec-
tively protected thiogalactoside 1511 (1.5 equiv) and
molecular sieves (3 A) in CH2Cl2 with dimethyl-
(methylthio)sulfonium triflate (DMTST). Trisaccharide
1612 was obtained in 85% yield. The benzoates were
removed applying catalytic amounts of NaOMe in
methanol (quant.), the triol heated in methanol for 16 h
in the presence of dibutyltin oxide13 (1.75 equiv), the
solvent removed and the residue dried. This material
and triflate 179c (3.0 equiv) were dissolved in DME, CsF
(2.5 equiv) was added and the mixture kept at ambient
temperature for 4 h. Compound 18 was isolated in 60%
yield. Hydrogenation of 18 in a mixture of dioxane/
water/acetic acid (0.7:0.25:0.05) using Pd(OH)2 (20%)
on charcoal as a catalyst followed by transformation of
the carboxylic acid into the sodium salt afforded the
potent E-selectin inhibitor 512 in 99% yield.
1. Springer, T. A. Cell 1994, 76, 301.
2. (a) Kansas, G. S. Blood 1996, 88, 3259. (b) Vestweber, D.;
Blanks, J. E. Physiol. Rev. 1999, 79, 181.
3. (a) Mousa, S. A. Drugs Fut. 1996, 21, 283. (b) Mousa, S. A.;
Cheresh, D. A. Drug Discovery Today 1997, 2, 187. (c) Cines,
D. B.; Pollak, E. S.; Buck, C. A.; Loscalzo, J.; Zimmermann,
G. A.; McEver, R. P.; Pober, J. S.; Wick, T. M.; Konkle, B. A.;
Schwartz, B. S.; Barnathan, E. S.; McCrae, K. R.; Hug, B. A.;
Schmidt, A.-M.; Stern, D. M. Blood 1998, 91, 3527.
4. The o-hydroxy-nonanoic acid methyl ester at the anomeric
position of d-glucosamine was used to simplify the purifica-
tion of the final product by reverse phase chromatography.
5. (a) Foxall, C.; Watson, S. R.; Dowbenko, D.; Fennie, C.;
Lsaky, L. A.; Kiso, M.; Hasegawa, A.; Asa, D.; Brandley,
B. K. J. Cell. Biol. 1992, 117, 895. (b) Varki, A. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 7390. (c) Varki, A. J. Clin. Invest.
1997, 100, S31.
6. (a) For reviews see Simanek, E. E.; McGarvey, G. J.;
Jablonowski, J. A.; Wong, C.-H. Chem. Rev. 1998, 98, 833. (b)
Bertozzi, C. R. Chem. Biol. 1995, 2, 703. (c) Musser, J. H.;
Anderson, M. B.; Levy, D. E. Curr. Pharm. Des. 1995, 1, 221.
(d) Giannis, A. Angew. Chem., Int. Ed. 1994, 33, 178.
7. Ramphal, J. Y.; Hiroshige, M.; Lou, B.; Gaudino, J. J.;
Hayashi, M.; Chen, S. M.; Chiang, L. C.; Gaeta, F. C. A.;
DeFrees, S. A. J. Med. Chem. 1996, 39, 1357.
8. (a). Oehrlein, R. WO9728173, 1997; Chem. Abstr. 1997,
127, 205814. (b) Oehrlein, R. WO9728174, 1997; Chem. Abstr.
1997, 127, 205815. (c) see also Baisch, G.; Oehrlein, R.; Kato-
podis, A.; Ernst, B. Bioorg. Med. Chem. Lett. 1996, 6, 759.
9. (a) Kolb, H. C.; Ernst, B. Chem. Eur. J 1997, 1571. (b)
Kolb, H. C.; Ernst, B. Pure Appl. Chem. 1997, 69, 1879. (c)
Thoma, G.; Kinzy, W.; Bruns, C.; Patton, J. T.; Magnani,
Biological Evaluation
Compound 5 was tested in a static, cell-free ligand
binding assay which measures E-selectin inhibition
under equilibrium conditions.14 To compare the data
for different compounds obtained on different test plates
sLex 1 (IC50=1000–1500 mM) was assayed on each plate
as a reference. This allows the determination of IC50
values relative to sLex which are defined as relative
IC50=IC50(test compound)/IC50(sLex). The relative
IC50 for 5 was determined in three independent
measurements to be 0.030ꢃ0.015. In addition, 5 was
profiled in a dynamic in vitro assay which allows
monitoring of E-selectin-dependent rolling of neutro-
phils on activated endothelial cells and, hence, mimics
the non-equilibrium in vivo conditions.15 sLex (1)
showed no inhibition in this more relevant assay at up to
1000 mM. Compound 5 was tested at 200, 50 and 10 mM
and showed 97, 93 and 54% inhibition of the number of
rolling cells, respectively. Thus, the IC50 was estimated
to be ꢄ10 mM.
J. L.; Banteli, R. J. Med. Chem. 1999, 42, 4909. (d) Banteli, R.;
¨
¨
Herold, P.; Bruns, C.; Patton, J. T.; Magnani, J. L.; Thoma,
G. Helv. Chim. Acta 2000, 83, 2893.
10. Gentil, E.; Potier, M.; Boullanger, P.; Descotes, G. Car-
bohydr. Res. 1990, 197, 7 5.
11. Kolb, H. C. WO9701569, 1997; Chem. Abstr. 1997, 126
186312
12. 11: MS/EI 936 (MꢁH)ꢁ; 1H NMR (400 MHz, CDCl3)
selected signals d 0.75 (3H, d, J=6.5 Hz, H-6 Fuc), 3.67(s, 3H,
CO2CH3), 4.82 (1H, d, J=8.0 Hz, H-1 Glc), 5.15 (1H, d,
J=3.5 Hz, H-1 Fuc), 5.18 (1H, dq, J=10.5, 1.5 Hz,
OCH2CH¼CHEHZ), 5.27(1H, dq,
J=17.5, 1.5 Hz,
OCH2CH¼CHEHZ), 5.48 (1H, s, Ar-CH-), 5.87(1H, ddt,
J=17.5, 1.5 Hz, OCH2CH¼CHEHZ); 16: MS/EI 1582
1
(MꢁH)ꢁ; H NMR (400 MHz, CDCl3) selected signals d 1.17
(3H, d, J=6.5 Hz, H-6 Fuc), 3.64 (s, 3H, CO2CH3), 3.74 (3H,
s, ArOCH3), 3.87(3H, s, ArOC H3), 4.35 (1H, m, H-1 Glc),
4.91 (1H, d, J=8.0 Hz, H-1 Gal), 5.47(1H, s (br), H-1 Fuc),
5.89 (1H, d, J=3.5 Hz, H-4 Gal), 6.62 (1H, d, J=8.5 Hz, Ar-
H), 6.63 (1H, d, J=8.0 Hz, NH); 5: MS/EI 974 (MꢁNa)ꢁ;
1H NMR (400 MHz, D2O) selected signals d 1.06 (3H, d,
J=6.5 Hz, H-6 Fuc), 3.54 (s, 3H, CO2CH3), 3.77 (3H, s,
ArOCH3), 3.76 (3H, s, ArOCH3), 4.38 (1H, d, J=8.0 Hz, H-1
Gal), 4.55 (1H, m, H-1 Glc), 4.70 (1H, q, J=6.5 Hz, H-5 Fuc),
5.01 (1H, s (br), H-1 Fuc), 7.00 (1H, d, J=8.5 Hz, Ar-H), 7.32
(1H, d, J=2.0 Hz, Ar-H), 7.32 (1H, dd, J=8.5, 2.0 Hz, Ar-H).
13. For regioselective manipulations of hydroxyl groups via
organotin derivatives see David, S; Hanessian, S. Tetrahedron
1985, 41, 643.
Conclusion
E-selectin antagonist 5 was rationally designed com-
bining two previously discovered beneficial structural
elements (cyclohexyllactic acid and amide modification)
in a single molecule. In a static equilibrium assay 5
(relative IC50=0.030) was found to be equally potent as
compound 4 (rel. IC50=0.031). In the dynamic flow
assay 5 (IC50=ꢄ10 mM) is even more potent than 4
(IC50=30–40 mM). Thus, compound 5 is one of the
most potent E-selectin inhibitors to date. Simplified
analogues of 5 are currently being evaluated.
14. Thoma, G.; Magnani, J. L.; Oehrlein, R.; Ernst, B.;
Schwarzenbach, F.; Duthaler, R. O. J. Am. Chem. Soc. 1997,
119, 7414.
15. (a) Thoma, G.; Patton, J. T.; Magnani, J. L.; Ernst, B.;
Oehrlein, R.; Duthaler, R. O. J. Am. Chem. Soc. 1999, 121,
5919.