RSC Advances
Paper
Table
5 Interaction and binding energies between the inhibitor
¨
¨
2 E. Bayol, T. Gurten, A. A. Gurten and M. Erbil, Mater. Chem.
molecules and Fe (1 1 0) surface
Phys., 2008, 112, 62.
˙
˘
3 H. Kele¸s, M. Kele¸s, I. Dehri and O. Serindag, Mater. Chem.
Systems
Eint (kJ molꢁ1
ꢁ603.0
)
Ebin (kJ molꢁ1
)
Phys., 2008, 112, 173.
4 S. Kumar, D. Sharma, P. Yadav and M. Yadav, Ind. Eng. Chem.
Res., 2013, 52, 14019.
Fe + APMA
603.0
5 J. J. Fu, H. S. Zang, Y. Wang, S. N. Li, T. Chen and X. D. Liu,
Ind. Eng. Chem. Res., 2012, 51, 6377.
electrons on the N atoms as well as p electrons in the aromatic
rings. N8 atom is the main adsorption center and one pyridine
ring acts as the main sites to accept electrons from the iron
atoms with its anti-bonding orbital to form a feedback bond.
Meanwhile, the aniline part behaves as the dominant site to
donate electrons to the unoccupied d-orbital of the iron atom to
form coordinate bonds. Some researchers have reported that
6 J. J. Fu, S. N. Li, Y. Wang, X. D. Liu and L. D. Lu, J. Mater. Sci.,
2011, 46, 3550.
7 N. A. Negm, F. M. Ghuiba and S. M. Tawk, Corros. Sci., 2011,
53, 3566.
8 A. K. Singh, Ind. Eng. Chem. Res., 2012, 51, 3215.
9 H. Gerengi and H. I. Sahin, Ind. Eng. Chem. Res., 2012, 51,
780.
mild steel surface carries positive excess charge in the acidic 10 Sudheer and M. A. Quraishi, Ind. Eng. Chem. Res., 2014, 53,
solution,17–19,50 and APMA molecules should be protonated in
2851.
hydrochloric acid solution. The protonated APMA molecules 11 Y. M. Tang, X. Y. Yang, W. Z. Yang, R. Wan, Y. Z. Chen and
can hardly approach the metal surface because of the electro-
X. S. Yin, Corros. Sci., 2010, 52, 1801.
static repulsion. Thus the hydrated chloride ions are specically 12 A. Kosari, M. H. Moayed, A. Davoodi, R. Parvizi, M. Momeni,
adsorbed onto the mild steel surface to create an excess negative
charge at rst, favoring the adsorption of protonated APMA. 13 R. Yıldız, A. Doner, T. Dogan and I. Dehri, Corros. Sci., 2014,
H. Eshghi and H. Moradi, Corros. Sci., 2014, 78, 138.
˙
¨
˘
Above all, the adsorption of APMA onto the mild steel surface
includes both physisorption and chemisorption.
82, 125.
¨
14 B. D. Mert, A. O. Yuce, G. Kardas and B. Yazıcı, Corros. Sci.,
2014, 85, 287.
15 F. Zhang, Y. M. Tang, Z. Y. Cao, W. H. Jing, Z. L. Wu and
Y. Z. Chen, Corros. Sci., 2012, 61, 1.
4. Conclusions
16 I. B. Obot and Z. M. Gasem, Corros. Sci., 2014, 83, 359.
17 B. Xu, W. Z. Yang, Y. Liu, X. S. Yin, W. N. Gong and
Y. Z. Chen, Corros. Sci., 2014, 78, 260.
18 B. Xu, W. N. Gong, K. G. Zhang, W. Z. Yang, Y. Liu, X. S. Yin,
H. Shi and Y. Z. Chen, J. Taiwan Inst. Chem. Eng., 2015, 51,
193.
In summary, 4-amino-N,N-di-(2-pyridylmethyl)-aniline (APMA)
was synthesized and evaluated as a corrosion inhibitor for mild
steel in 1.0 M HCl. The experimental results showed that APMA
was a mixed type inhibitor, retarding both anodic metal disso-
lution and cathodic hydrogen evolution reactions. The EIS
results specied that dissolution of mild steel was prevented by
the adsorption of APMA on the metal surface. The adsorption
behavior obeyed Langmuir adsorption isotherm. Quantum
chemical calculations showed that N8 atom is the main
adsorption center and one pyridine ring acts as the main sites to
accept electrons from the iron atoms with its anti-bonding
orbital to form a feedback bond. Meanwhile, the aniline part
behaves as the dominant site to donate electrons to the unoc-
cupied d-orbital of the iron atom to form coordinate bonds. The
molecular dynamics simulations results revealed that the non-
planar adsorption of APMA molecules on the Fe (110) surface.
The surface analysis experiments (SEM-EDX, XPS) conrmed
the adsorption of APMA on the mild steel surface.
19 B. Xu, Y. Liu, X. S. Yin, W. Z. Yang and Y. Z. Chen, Corros.
Sci., 2013, 74, 206.
20 K. F. Khaled and M. A. Amin, Corros. Sci., 2009, 51, 2098.
21 S. Lindsay, S. K. Lo, O. R. Maguire, E. Bill, M. R. Probert,
S. Sproules and C. R. Hess, Inorg. Chem., 2013, 52, 898.
22 Z. Y. Cao, Y. M. Tang, H. Cang, J. Q. Xu, G. Lu and W. H. Jing,
Corros. Sci., 2014, 83, 292.
23 S. D. Deng, X. H. Li and X. G. Xie, Corros. Sci., 2014, 80, 276.
24 S. Shahabi, P. Norouzi and M. R. Ganjali, RSC Adv., 2015, 5,
20838.
25 G. M. A. El-Reash, O. A. El-Gammal and A. H. Radwan,
Spectrochim. Acta, Part A, 2014, 121, 259.
26 Y. M. Tang, F. Zhang, S. X. Hu, Z. Y. Cao, Z. L. Wu and
W. H. Jing, Corros. Sci., 2013, 74, 271.
Acknowledgements
27 F. Mansfeld, Corros. Sci., 2005, 47, 3178.
28 E. McCafferty, Corros. Sci., 2005, 47, 3202.
29 D. M. Gurudatt and K. N. Mohana, Ind. Eng. Chem. Res.,
2014, 53, 2092.
30 E. S. Ferreira, C. Giancomelli, F. C. Giacomelli and
A. Spinelli, Mater. Chem. Phys., 2004, 83, 129.
31 W. H. Li, Q. He, S. T. Zhang, C. L. Pei and B. R. Hou, J. Appl.
Electrochem., 2008, 38, 289.
Financial supports from the National Major Science and Tech-
nology Program for Water Pollution Control and Treatment
(2013ZX07210-001) are highly appreciated.
Notes and references
1 X. H. Li, S. D. Deng, H. Fu and T. H. Li, Electrochim. Acta, 32 C. Cao, Corros. Sci., 1996, 38, 2073.
2009, 77, 4089.
56058 | RSC Adv., 2015, 5, 56049–56059
This journal is © The Royal Society of Chemistry 2015