C72H48O12V2·0.72 MeOH, Mr = 1207.06 (excl. solv), monoclinic, space
group C2/c, a = 22.982(4), b = 17.906(3), c = 18.057(3) Å, b =
127.09(1)°, U = 5945.7 Å3, Z = 4, T = 106 K, m = 3.829 cm21, 3038
reflections with F > 3s(F), R(F) = 0.0481, Rw(F) = 0.0510. 3·CH2Cl2:
C73H50O12Cl2Mn2, Mr = 1300.0, triclinic, space group P1, a = 15.682(3),
b = 16.850(4), c = 13.843(3) Å, a = 105.63(1), b = 102.92(1), g =
113.93(1)°, U = 2980.5 Å3, Z = 2, T = 102 K, m = 5.806 cm21, 8025
200.0
150.0
100.0
50.0
¯
reflections with F > 3s(F), R(F)
= 0.0657, Rw(F) = 0.0589. 4·thf:
¯
C76H56O13Fe2, Mr = 1293.00, triclinic, space group P1, a = 16.151(5), b
= 16.982(6), c = 11.817(4) Å, a = 108.50(2), b = 103.54(2), g =
87.24(2)°, U = 2987.0 Å3, Z = 2, T = 103 K, m = 5.561 cm21, 4128
00.0
i
reflections with F > 3s(F), R(F)
182/522.
= 0.0911, Rw(F) = 0.0835. CCDC
–50.0
–100.0
–150.0
–200.0
1 J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
2 C. Piguet, G. Bernardinelli, B. Bocquet, A. Quattropani and A. F.
Williams, J. Am. Chem. Soc., 1992, 114, 7440; C. Piguet, J.-C. G.
Bu¨nzli, G. Bernardinelli, G. Hopfgartner and A. F. Williams, J. Am.
Chem. Soc., 1993, 115, 8197; C. Piguet, G. Bernardinelli, B. Bocquet,
O. Schaad and A. F. Williams, Inorg. Chem., 1994, 33, 4112.
3 M.-T. Youinou, R. Ziessel and J.-M. Lehn, Inorg. Chem., 1991, 30,
2144.
4 T. M. Garrett, U. Koert, J.-M. Lehn, A. Rigault, D. Meyer and J. Fischer,
J. Chem. Soc., Chem. Commun., 1990, 557; J.-M. Lehn, A. Rigault, J.
Siegal, J. Harrowfield, B. Chevrier and D. Moras, Proc. Natl. Acad. Sci.
USA, 1987, 84, 2565; W. Zarges, J. Hall, J.-M. Lehn and C. Bolm, Helv.
Chim. Acta, 1991, 74, 1843.
5 R. C. Scarrow, D. L. White and K. N. Raymond, J. Am. Chem. Soc.,
1985, 107, 6540.
6 B. R. Serr, K. A. Andersen, C. M. Elliot and O. P. Anderson, Inorg.
Chem., 1988, 27, 4499; S. Ferrere and C. M. Elliot, Inorg. Chem., 1995,
34, 5818.
7 K. T. Potts, K. A. Gheysen Raiford and M. Keshavarz-K, J. Am. Chem.
Soc., 1993, 115, 2793.
8 R. Chotalia, E. C. Constable, M. Neuburger, D. R. Smith and M.
Zehnder, J. Chem. Soc., Dalton Trans., 1996, 4207; C. Piguet, G.
Hopfgartner, B. Bocquet, O. Schaad and A. F. Williams, J. Am. Chem.
Soc., 1994, 116, 9092.
1.50
0.50
–0.50
E / V
–1.50
–2.50
–2.00
1.00
0.00
–1.00
Fig. 3 Cyclic voltammogram at 100 mV s21 for complex 2 in dmf at a glassy
carbon electrode and with NBun4PF6 as supporting electrolyte
21.900 V (DE = 0.180 V) for 1 and 21.104, 21.240 V (DE
= 0.136 V) and 21.840, 22.000 V (DE = 0.160 V) for 2 vs.
SCE. In addition, for both complexes, there is a less well
resolved pair of oxidation processes: +0.016, +0.092 V for 1
(DE = 0.076 V) and +0.808, +0.884 V for 2 (DE = 0.080 V).
The large DE values are indicative of intramolecular inter-
actions between the two MIII ions. Complex 4 shows only a
single pair of reversible reductions, at 20.460 and 20.584 V.
Complex 3 shows a broad, quasi-reversible reduction process at
20.018 V (Epc 2 Epa = 0.520 V), with an additional
irreversible oxidation at approximately +1.238 V. For all four
species, additional reductions are observed at < 22.0 V. The
redox behaviour of 1–4 is related to that of the corresponding
mononuclear M(dbm)3 (dbm = anion of dibenzoylmethane),
which exhibit single redox processes at similar processes to 1–4.
Variable-temperature magnetic susceptibility studies on 1–4 are
currently in progress to quantitate the strength of intramolecular
interactions within these molecules.
9 R. Kra¨mer, J.-M. Lehn, A. De Cian and J. Fischer, Angew. Chem., Int.
Ed. Engl., 1993, 32, 703.
10 P. Baxter, J.-M. Lehn, A. De Cian and J. Fischer, Angew. Chem., Int. Ed.
Engl., 1993, 32, 69.
11 E. Leize, A. Van Dorsselaer, R. Kra¨mer and J.-M. Lehn, J. Chem. Soc.,
Chem. Commun., 1993, 990; M. Albrecht, S. J. Franklin and K. N.
Raymond, Inorg. Chem., 1994, 33, 5785.
This work was supported by the National Science Founda-
tion.
12 B. Hasenknopf, J.-M. Lehn, B. O. Kneisel, G. Baum and D. Fenske,
Angew. Chem., Int. Ed. Engl., 1996, 35, 1838.
13 D. F. Martin, M. Shamma and W. C. Fernelius, J. Am. Chem. Soc., 1958,
80, 4891.
Footnotes and References
14 L. E. Manzer, Inorg. Synth., 1982, 21, 138.
* E-mail: christou@indiana.edu
15 T. B. Karpishin, T. D. P. Stack and K. N. Raymond, J. Am. Chem. Soc.,
1993, 115, 6115; B. Kersting, M. Meyer, R. E. Powers and K. N.
Raymond, J. Am. Chem. Soc., 1996, 118, 7221.
16 E. J. Enemark and T. D. P. Stack, Angew. Chem., Int. Ed. Engl., 1995,
34, 996.
17 M. Albrecht and S. Kotila, Angew. Chem., Int. Ed. Engl., 1995, 34,
2134; M. Albrecht and S. Kotila, Chem. Commun., 1996, 2309; M.
Albrecht, H. Rottele and P. Burger, Chem. Eur. J., 1996, 2, 1264.
† Selected spectroscopic data for L: 1H NMR (CD2Cl2, 500 MHz): d 6.98
(s, 2 H), 7.53 (t, J 8 Hz, 4 H), 7.61 (t, J 8 Hz, 2 H), 7.66 (t, J 8 Hz, 1 H), 8.04
(d, J 8 Hz, 4 H), 8.19 (d, J 8 Hz, 2 H), 8.60 (s, 1 H); EI-MS (M+) 370.1
(C24H18O4 requires 370.1).
‡ The complexes analysed satisfactorily.
§ Crystal data 1: C72H48O12Ti2, Mr = 1200.90, monoclinic, space group
C2/c, a = 22.924(3), b = 17.721(2), c = 18.870(2) Å, b = 129.60(1)°, U
= 5906.7 Å3, Z = 4, T = 106 K, m = 3.293 cm21, 1689 reflections with
F > 4s(F), R(F)
=
0.0645, Rw(F2)
=
0.1030. 2·0.72 MeOH:
Received in Cambridge, UK, 1st May 1997; 7/02971C
1562
Chem. Commun., 1997