H.-B. Yu, W.-Y. Huang / Journal of Fluorine Chemistry 84 (1997) 65–67
67
2F, CF2Cl), 107.4 (m, 2F, _CCF2), 119.1 (m, 4F, CF2CF2)
ppm; IR (n, cmy1) 2974, 2847, 1618, 1593, 1507, 1206,
1100–1140; MS 489 (Mqq2, 10.46), 487 (Mq, 30.27),
252 (Mq-Cl(CF2)4, 100.00); analysis calculated for
C20H14ClF8NO2 C 49.25, H 2.89, N 2.87, F 31.16; found C
49.28, H 2.80, N 2.73, F 31.18.
with a variety of substitution patterns from b-polyfluoroalkyl
enaminones and hydrazine monohydrate or amidines respec-
tively. This work broadened the utility of b-polyfluoroalkyl
enaminones in organic synthesis and provided a convenient
synthesis for fluoroalkyl heterocycles.
Preparation of 4d. Hydrazine monohydrate (30 mg, 0.62
mmol) was added to a solution of 3bb (100 mg, 0.26 mmol)
in ethanol (3 ml) and the mixture was heated to 60 8C for 2
h with stirring. The cold mixture was then extracted with
diethyl ether (20 ml=3) and the organic layer was washed
with brine followed by drying over Na2SO4. After removal
of the solvent underreducedpressure, theresiduewaspurified
by thin layer chromatography on silica gel (petroleum ether
(b.p. 60–90 8C):ethyl acetate 3:1) to give 4d as colorless
References
[1] R. Filler, Y. Kobayashi (Eds.), Biomedicinal Aspects of Fluorine
Chemistry, Kodansha and Elsevier Biomedical, Tokyo, 1982; Y.T.
Welch, S. Eswarakrishnan, Fluorine in Bioorganic Chemistry, Wiley,
New York, 1991.
[2] S. Ishii, K. Yagi, Y. Umehara, M. Kudo, T. Nawamaki, S. Watanabe,
Jpn. Patent 02,129,171/1990, 1990; Chem. Abstr. 113 (1990)
172014a; H. Shimotori, T. Ishii, H. Yamazaki, T. Kuwatsuka, Y.
Yanase, Y. Tanaka, GP 3,713,744/1987, 1987; Chem. Abstr., 108
(1988) 112445d; I.G. Buntain, L.R. Hatton, D.W. Hawkins, C.J.
Pearson, D.A. Roberts, Eur. Patent. Appl. 295, 117/1988, 1988; Chem.
Abstr., 112 (1990) 35845n; R.G. Micetich, R.B. Rastogi, Can. Patent
1,130,808/1982, 1982; Chem. Abstr., 98 (1983) 72087e.
[3] B. Gustavsson, L. Hafstroem, Acta Chir. Scand. Suppl. 504 (1981)
28.
[4] F. Fabra, J.J. Vilarrasa, Heterocycl. Chem. 15 (1978) 1447–1449; F.
Fabra, E. Fos, J. Vilarrasa, Tetrahedron Lett., 20 (1979) 3179–3180;
K. Makino, H. Yoshioka, J. Fluorine Chem., 39 (1988) 435–440; J.
Ichidawa, M. Kobayashi, Y. Noda, N. Yokota, K. Amano, T. Minami,
J. Org. Chem., 61 (1996) 2763–2769.
[5] P. Bravpo, D. Diliddo, G. Resnati, Tetrahedron 50 (1994) 8827–8836;
X.-Q. Tang, C.-M. Hu, J. Chem. Soc., Perkin Trans. 1, (1995) 1039–
1043; J. Chem. Soc., Perkin Trans. 1, (1994) 2161–2163 and
references cited therein.
[6] M.J. Silvester, Aldrichim. Acta 24 (1991) 31–38; H. Sawada, M.
Nakayama, Yukagaku, 38 (1989) 985–995; K. Burger, F. Hein, U.
Wassmuth, H. Krist, Synthesis, (1981) 904–905; G.J. Chen, C.
Tamborski, J. Fluorine Chem., 46 (1990) 137–159.
[7] D.J. Brown, The Pyrimidines, Wiley-Interscience, New York, 1962;
D.J. Brown, R.F. Evans, T.J. Batterham, The Pyrimidines, Supplement
1, Wiley-Interscience, New York, 1970; D.J. Brown, in: A.R.
Katritzky, C.W. Rees(Eds.), ComprehensiveHeterocyclicChemistry,
Vol. 3, Pergamon, Exeter, 1984, pp. 57–155.
[8] J.V. Greenhill, Chem. Soc. Rev. 6 (1977) 277–294.
[9] H. Bredereck, F. Effenberger, H. Botsch, Chem. Ber. 97 (1964) 3397–
3406; H. Bredereck, R. Sell, F. Effenberger, Chem. Ber. 97 (1964)
3407–3417; J.C. Martin, K.R. Barton, D.G. Gott, R.H. Meen, J. Org.
Chem. 31 (1966) 943–946.
[10] E. Dom´ınguez, E.M. Marigorta, R. Olivera, R. SanMartin, Synlett.
(1995) 955–956; E. Dom´ınguez, E. Ibeas, D.M. Marigotta, J.K.
Palacios, R. SanMartin, J. Org. Chem. 61 (1996)5435–5439;E. Bejan,
H.A. Haddon, J.C. Daran, G.G.A. Balavoine, Synthesis (1996) 1012–
1018.
[11] H.-B. Yu, W.-Y. Huang, Tetrahedron Lett. 37 (1996) 7999–8000.
[12] K. Uneyama, O. Morimoto, F. Yamashita, TetrahedronLett. 30(1989)
4821–4824.
1
crystals (55 mg, 93%) and 5b. 4d had m.p. 88–90 8C; H
NMR (90 MHz, CDCl3) 7.55 (s, 1H), 6.73–6.49 (m, 3H,
H-furan) ppm; 19F NMR (56.4 Hz, CDCl3, CFCl3 as the
external standard) 70.2 (s, 2F, CF2Cl), 108.8 (s, 2F, CF2)
ppm; 13C NMR (75.4 MHz, CDCl3) 141.95(t, Js29 Hz,
C3), 101.91 (s, C4) ppm; IR (n, cmy1) 3131, 2905, 1631,
1504, 1413, 1263, 1134; MS270(Mqq2, 31.10), 268(Mq,
86.10), 183 (Mq-CF2Cl, 100.00); analysis calculated for
C9H5ClF4N2O C 40.25, H 1.88, N 10.43, F 28.29; found C
40.20, H 1.83, N 10.40, F 28.20.
Preparation of 7a. Benzamidine hydrochloride (6a) (61
mg, 0.39 mmol) and K2CO3 (144 mg, 1.04 mmol) were
added to a stirred solution of 3ba (100 mg, 0.26 mmol) in
dioxane (3 ml). The mixture was stirred for 12 h at a tem-
perature of 80 8C. Then the cold mixture was washed with
saturated aqueous NH4Cl solution and extracted with diethyl
ether (20 ml=3). The organic extracts were dried over
Na2SO4 and evaporated in vacuo. The residue was purified
by flash column chromatography on silica gel (petroleum
ether (b.p. 60–90 8C):ethyl acetate 100:1) to give 7a as
colorless crystals (100 mg, 90%) and 5b. 7a had m.p. 122–
1
123 8C; H NMR (90 MHz, CDCl3) 8.68 (m, 2H, Ph-H),
8.38 (m, 2H, Ph-H), 7.95 (s, 1H, heterocyclic-H), 7.58 (m,
6H, Ph-H); 19F NMR (56.4 Hz, CDCl3, CFCl3 as external
standard) 68.2 (s, 2F, CF2Cl), 113.8 (s, 2F, CF2-ring) ppm;
IR (n, cmy1) 1587, 1572, 1548, 1382, 1367, 1164, 1151,
1087; MS 366(Mq, 100.00); analysis calculated for
C18H11ClF4N2 C 58.95, H 3.02, N 7.64, F 20.72; found C
59.06, H 3.06, N 7.52, F 20.25.
In conclusion, a convenient synthetic method has been
developed for the preparation of pyrazoles or pyrimidines