11124
J. Am. Chem. Soc. 1997, 119, 11124-11125
Scheme 1
The First Kinetically Stabilized Stannaneselone and
Diselenastannirane: Synthesis by Deselenation of a
Tetraselenastannolane and Structures
Masaichi Saito,† Norihiro Tokitoh, and Renji Okazaki*
Department of Chemistry, Graduate School of Science
The UniVersity of Tokyo, 7-3-1, Hongo, Bunkyo-ku
Tokyo 113 Japan
ReceiVed July 7, 1997
Recently, significant progress has been made in the chemistry
of low-coordinated and strained compounds of heavier main
group elements, especially those involving group 14 elements.1
Previous studies on such species, however, have centered on
silicon and germanium compounds, and the chemistry of such
compounds containing tin has been much less explored.
As for low-coordinated tin compounds, some stable double-
bond species with group 14 (SndSn,2 SndC,3 and SndCdN4)
and group 15 elements (SndN5 and SndP6) have been
synthesized, but tin-chalcogen double-bond compounds so far
reported are restricted to those thermodynamically stabilized
by intramolecular coordination,7 which are highly perturbed by
electron donation from neighboring nitrogen atoms to an
electron-deficient tin center as evidenced by their high-field
chemical shifts in 119Sn NMR (vide infra). We previously
reported the synthesis of heavier element analogues of a ketone
with SidS8 and GedX (X ) S, Se, Te)9 kinetically stabilized
by a very efficient steric protection group, 2,4,6-tris[bis-
(trimethylsilyl)methyl]phenyl (Tbt) group, developed by us.
Although we also described the synthetic approach to tin-
chalcogen double-bond compounds, Tbt(Tip)SndX (Tip )
2,4,6-triisopropylphenyl; X ) S, Se), by dechalcogenation of
1,2,3,4,5-tetrachalcogenastannolanes10 and chalcogenation of the
corresponding stannylene,11 they were found to be stable only
in solution and dimerize in the solid state. With regard to three-
membered ring compounds of heavier group 14 elements, a
relatively large number of examples have been described1
including those containing one chalcogen atom,12 but there is
no precedent which contains two chalcogen atoms in the ring.13
We report here that the deselenation of a tetraselenastannolane
by a phosphine reagent affords a stannaneselone without
intramolecular coordination or a diselenastannirane, depending
on the equivalence of the phosphine reagent used. Each of them
represents the first isolation of such a species.
Tetraselenastannolanes Tbt(Ar)SnSe4 (1) [1a, Ar ) 2,4,6-
tricyclohexylphenyl (Tcp), 22%; 1b, Ar ) 2,4,6-tris(1-ethyl-
propyl)phenyl (Tpp), 22%; 1c, Ar ) 2,2′′-diisopropyl-m-
terphenyl-2′-yl (Ditp), 38%], precursors for the synthesis of tin-
selenium double-bond compounds,15 were easily obtained by
the reactions of the corresponding stannylenes Tbt(Ar)Sn: with
excess of elemental selenium. Our previous observation that
Tbt(Tip)SndSe readily dimerized at ambient temperature so that
its 119Sn NMR was unable to be measured11 led us to use a
bulkier Tcp or Tpp group instead of Tip group. Treatment of
Tbt(Tcp)SnSe4 1a with 3 equiv of triphenylphosphine in toluene
gave a deep red solution, whose 119Sn signal showed a signal
at 556 ppm assignable to stannaneselone 2a. This low-field
chemical shift is characteristic of low-coordinated tin, e.g., R2-
SndSnR2 (725,2a 427.52b ppm), R2SndCR′2 (835,3a 2883b ppm),
and R2SndPR′ (658.3,6a 499.56b ppm), indicating that stan-
naneselone 2a displays an intrinsic nature of tin-selenium
double-bond compounds, in sharp contrast to the Parkin’s
terminal selenido complex whose 119Sn NMR appears at a much
higher field (-444 ppm).7a Similarly, the reaction of Tbt(Tpp)-
SnSe4 1b with 3 equiv of triphenylphosphine also gave
stannaneselone 2b (δSn: 547 ppm). Although stannaneselones
2a and 2b were stable in solution for a short time at room
temperature, the deep red color of the solution gradually
disappeared over a few hours.
† Present address: Department of Chemistry, Faculty of Science, Saitama
University, Japan.
(1) For reviews, see: (a) West, R. Pure Appl. Chem. 1984, 56, 163. (b)
Satge´, J. Pure Appl. Chem. 1984, 56, 137. (c) Raabe, G.; Michl, J. Chem.
ReV. 1985, 85, 419. (d) West, R. Angew. Chem., Int. Ed. Engl. 1987, 26,
1201. (e) Barrau, J.; Escudie´, J.; Satge´, J. Chem. ReV. 1990, 90, 283. (f)
Satge´, J. J. Organomet. Chem. 1990, 400, 121. (g) Neumann, W. P. Chem.
ReV. 1991, 91, 311. (h) Tsumuraya, T.; Batcheller, S. A.; Masamune, S.
Angew. Chem., Int. Ed. Engl. 1991, 30, 902. (i) Brook, A. G.; Brook, M.
A. AdV. Organomet. Chem. 1996, 39, 71. (j) Okazaki, R.; West, R. AdV.
Organomet. Chem. 1996, 39, 232. (k) Baines, K. M.; Stibbs, W. G. AdV.
Organomet. Chem. 1996, 39, 275.
(2) (a) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K. M. J.
Chem. Soc., Chem. Commun. 1976, 261. (b) Masamune, S.; Sita, L. R. J.
Am. Chem. Soc. 1985, 107, 6390.
(3) (a) Meyer, H.; Baum, G.; Massa, W.; Berger, S.; Berndt, A. Angew.
Chem., Int. Ed. Engl. 1987, 26, 546. (b) Anselme, G.; Ranaivonjatovo, H.;
Escudie´, J.; Couret, C.; Satge´, J. Organometallics 1992, 11, 2748.
(4) Gru¨tzmacher, H.; Freitag, S.; Herbst-Irmar, R.; Sheldrick, G. S.
Angew. Chem., Int. Ed. Engl. 1992, 31, 437.
(5) Ossig, G.; Meller, A.; Freitag, S.; Herbst-Irmer, R. J. Chem. Soc.,
Chem. Commun. 1993, 497.
The unsuccessful attempts at the isolation of a stable
stannaneselone by using the combination of Tbt-Tcp and Tbt-
Tpp groups prompted us to develop a ligand even bulkier than
Tcp and Tpp. We have introduced a new efficient steric
(6) (a) Couret, C.; Escudie´, J.; Satge´, J.; Raharinirina, A.; Andriamizaka,
J. D. J. Am. Chem. Soc. 1985, 107, 8280. (b) Ranaivonjatovo, H.; Escudie´,
J.; Couret, C.; Satge´, J. J. Chem. Soc., Chem. Commun. 1992, 1047.
(7) (a) Kuchta, M. C.; Parkin, G. J. Am. Chem. Soc. 1994, 116, 8372.
(b) Leung, W.-P.; Kwok, W.-H.; Law, L. T. C.; Zhou, Z.-Y.; Mak, T. C.
W. J. Chem. Soc., Chem. Commun. 1996, 505.
(12) (a) Tan, R. P.-K.; Gillette, G. R.; Powell, D. R.; West, R.
Organometallics 1991, 10, 546. (b) Tsumuraya, T.; Sato, S.; Ando, W.
Organometallics 1988, 7, 2015. (c) Scha¨fer, A.; Weidenbruch, M.; Saak,
W.; Pohl, S.; Marsmann, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 962.
(13) The isolation of stable dithiirane and its oxide has recently been
reported. (a) Ishii, A.; Akazawa, T.; Ding, M.-X.; Honjo, T.; Nakayama,
J.; Hoshino, M.; Shiro, M. J. Am. Chem. Soc. 1993, 115, 4914. (b) Ishii,
A.; Akazawa, T.; Maruta, T.; Nakayama, J.; Hoshino, M.; Shiro, M. Angew.
Chem., Int. Ed. Engl. 1994, 33, 777.
(8) Suzuki, H.; Tokitoh, N.; Nagase, S.; Okazaki, R. J. Am. Chem. Soc.
1994, 116, 11578.
(9) (a) Tokitoh, N.; Matsumoto, T.; Manmaru, K.; Okazaki, R. J. Am.
Chem. Soc. 1993, 115, 8855. (b) Matsumoto, T.; Tokitoh, N.; Okazaki, R.
Angew. Chem., Int. Ed. Engl. 1994, 33, 2316. (c) Tokitoh, N.; Matsumoto,
T.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 2337.
(10) (a) Matsuhashi, Y.; Tokitoh, N.; Okazaki, R. Organometallics 1993,
12, 2573. (b) Saito, M.; Tokitoh, N.; Okazaki, R. J. Organomet. Chem.
1995, 499, 43.
(11) (a) Tokitoh, N.; Saito, M.; Okazaki, R. J. Am. Chem. Soc. 1993,
115, 2065. (b) Saito, M.; Tokitoh, N.; Okazaki, R. Organometallics 1996,
15, 4531.
(14) For some recent reports on the synthesis of main group element
compounds with unique structures using m-terphenyl ligands, see: (a)
Schiemenz, B.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 2150.
(b) Grigsby, W. J.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 7981. (c)
Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 11966. We also
developed a new type of bowl-shaped m-terphenyl ligand. (d) Goto, K.;
Holler, M.; Okazaki, R. Tetrahedron Lett. 1996, 37, 3141. (e) Goto, K.;
Holler, M.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 1460.
(15) For the details of the spectral data, see Supporting Information.
S0002-7863(97)02221-X CCC: $14.00 © 1997 American Chemical Society