10.1002/chem.201804393
Chemistry - A European Journal
COMMUNICATION
[6]
[7]
[8]
[9]
J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740-1741.
Y. Wang, G. Zhang, M. Gao, Y. Cai, C. Zhan, Z. Zhao, D. Zhang, B. Z.
Tang, Faraday Discuss. 2017, 196, 9-30.
viewed along the a axis (Figure S13). The lack of halogen bonds
or the weaker hydrogen bonds make SQDPA-Cl and SQDPA-Br
more flexible and easily switch between the crystalline and
amorphous states. Molecular packing of SQDPA-I was formed by
multiple intermolecular C-I···I-C interactions[30] (3.839 Å, 3.825 Å)
and hydrogen bonds C-I···H-C (3.134 Å) in single crystal viewed
along the a axis (Figure S14). There are more interactions in the
case of SQDPA-I than other SQDs and thus endow SQDPA-I with
different fluorochromic properties.
In summary, a series of new symmetric squarylium dyes
(SQDs) with AIE and flourochromic features were developed. All
SQDs display typical AIE behaviour. Among that, SQDPA-F
exhibits distinctive mechanofluorochromic properties. While
SQDPA-Cl and SQDPA-Br display obvious mechanochromic
phoenomenon with high contrast and reversibility. However,
SQDPA-I is mechanochromic inactive but possesses obvious
vapochromic feature. In contrast, the non-halogen substituted
SQDPA-H does not display any flourochromic properties. The
photophysical and fluorochromic properties studies reveals that
the different halogen substituents greatly influence the eventual
functions of these SQDs. Our work demonstrates that
incorporating halogen substitution into AIE luminogens provides a
new approach for the exploration of novel fluorochromic materials.
S. Gan, W. Luo, B. He, L. Chen, H. Nie, R. Hu, A. Qin, Z. Zhao, B. Z.
Tang, J. Mater. Chem. C 2016, 4, 3705-3708.
Z. Zhao, C. Deng, S. Chen, J. W. Y. Lam, W. Qin, P. Lu, Z. Wang, H. S.
Kwok, Y. Ma, H. Qiu, B. Z. Tang, Chem. Commun. 2011, 47, 8847-8849.
[10] N. B. Shustova, T.-C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G. Griffin,
M. Dincă, J. Am. Chem. Soc. 2012, 134, 15061-15070.
[11] X. Luo, J. Li, C. Li, L. Heng, Y. Q. Dong, Z. Liu, Z. Bo, B. Z. Tang, Adv.
Mater. 2011, 23, 3261-3265.
[12] C. Ma, X. Zhang, Y. Yang, Z. Ma, L. Yang, Y. Wu, H. Liu, X. Jia, Y. Wei,
Dyes and Pigments 2016, 129, 141-148.
[13] E. Kwon, J. Kim, K. Y. Lee, T. H. Kim, Inorg. Chem. 2017, 56, 943-949.
[14] Y. Li, J. Guo, A. Liu, D. Jia, X. Wu, Y. Chen, RSC Adv. 2017, 7, 9847-
9853.
[15]
A. Maier, K. Cheng, J. Savych, B. Tieke, ACS Appl. Mater. Inter. 2011,
3, 2710-2718.
[16] A. Lavrenova, D. W. R. Balkenende, Y. Sagara, S. Schrettl, Y. C. Simon,
C. Weder, J. Am Chem. Soc. 2017, 139, 4302-4305.
[17]
[18]
M. J. Robb, T. A. Kim, A. J. Halmes, S. R. White, N. R. Sottos, J. S.
Moore, J. Am Chem. Soc. 2016, 138, 12328-12331.
F. Terenziani, A. Painelli, C. Katan, M. Charlot, M. Blanchard-Desce, J.
Am Chem. Soc. 2006, 128, 15742-15755.
[19] A. Sakon, A. Sekine, H. Uekusa, Cryst. Growth Des. 2016, 16, 4635-
4645.
[20] (a) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem.
Soc. Rev. 2012, 41, 3878-3896. (b) E. Kwon, J. Kim, K. Y. Lee, T. H. Kim,
Inorg. Chem. 2017, 56, 943-949.
Acknowledgements
[21] S. Sreejith, P. Carol, P. Chithra, A. Ajayaghosh, J. Mater. Chem. 2008,
18, 264-274.
This work was supported by the National Natural Science
Foundation of China (51522303, 21602154), the National Key
[22] N. J. Hestand, C. Zheng, A. R. Penmetcha, B. Cona, J. A. Cody, F. C.
Spano, C. J. Collison, J. Phys. Chem. C 2015, 119, 18964-18974.
[23] Y. Ohsedo, M. Miyamoto, A. Tanaka, H. Watanabe, Dyes and Pigments
2014, 101, 261-269.
Research
and
Development
Program
of
China
(2017YFA0207500) and the Natural Science Foundation of
Tianjin (17JCJQJC44600).
[24] C. A. DeRosa, C. Kerr, Z. Fan, M. Kolpaczynska, A. S. Mathew, R. E.
Evans, G. Zhang, C. L. Fraser, ACS Appl. Mater. Inter. 2015, 7, 23633-
23643.
Keywords: symmetric squarylium dyes • halogen • aggregation-
induced emission • mechanochromism • vapochromism
[25] Y. Fang, Z. Li, B. Yang, S. Xu, X. Hu, Q. Liu, D. Han, D. Lu, J. Phys.
Chem. C 2014, 118, 16113-16125.
[26] M. T. Gabr, F. C. Pigge, Dalton Trans. 2018, 47, 2079-2085.
[1]
[2]
B. Daly, J. Ling, A. P. de Silva, Chem. Soc. Rev. 2015, 44, 4203-4211.
M. Gao, H. Su, S. Li, Y. Lin, X. Ling, A. Qin, B. Z. Tang, Chem. Commun.
2017, 53, 921-924.
[27]
X. Y. Shen, Y. J. Wang, E. Zhao, W. Z. Yuan, Y. Liu, P. Lu, A. Qin, Y.
Ma, J. Z. Sun, B. Z. Tang, J. Phys. Chem. C 2013, 117, 7334-7347.
[28] W. Z. Yuan, Y. Tan, Y. Gong, P. Lu, J. W. Y. Lam, X. Y. Shen, C. Feng,
H. H. Y. Sung, Y. Lu, I. D. Williams, J. Z. Sun, Y. Zhang, B. Z. Tang, Adv.
Mater. 2013, 25, 2837-2843.
[3]
[4]
[5]
T. Liu, K. Yu, L. Gao, H. Chen, N. Wang, L. Hao, T. Li, H. He, Z. Guo, J.
Mater. Chem. A 2017, 5, 17848-17855.
A. R. Ballestas-Barrientos, A. W. Woodward, W. V. Moreshead, M. V.
Bondar, K. D. Belfield, J. Phys. Chem. C 2016, 120, 7829-7838.
J. Liu, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2009, 109, 5799-5867.
[29] Y. Ohsedo, K. Saruhashi, H. Watanabe, Dyes and Pigments 2015, 122,
134-138.
[30] L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati, J. W. Steed,
Nat. Chem. 2012, 5, 42.
This article is protected by copyright. All rights reserved.