pertaining to crystalline polymer versus the peak at 1044 cmꢁ1
15 L. Hu, M. Pasta, F. La Mantia, L. Cui, S. Jeong, H. D. Deshayer,
J. W. Choi, S. M. Han and Y. Cui, Nano Lett., 2012, 10, 708–714.
16 D. Braun and A. Heeger, Appl. Phys. Lett., 1991, 58, 1982–1984.
17 T. Schwalm, J. Wiesecke, S. Immel and M. Rehahn, Macromol. Rapid
Commun., 2009, 30, 1295–1322.
which is more prevalent in amorphous polymer.
Conclusions
18 T. Schwalm and M. Rehahn, Macromol. Rapid Commun., 2008, 29,
207–213.
The first sulfinyl-based poly(p-phenylene vinylene) fibers were
fabricated, and their unique fiber crystallinities and orientations
were examined as related to various jet draw ratios. Soluble,
processable poly(p-phenylene vinylene) was synthesized using
a sulfinyl-based monomer, and both polymer composition and
solution rheology for dry spinning were optimized. Spinning
dopes with 45.0 to 50.0 g of polymer were prepared in chloroform
and spun on a dry-spinning apparatus with various jet stretch
ratios from 0 to 151% stretch. Fluorescent fibers resulted. Fiber
diameters were under 60 mm by SEM, analyses of X-ray profiles
indicated enhanced orientation in the fibers compared to the
unprocessed polymers. Future experiments will aim to make
these fibers more uniform with enhanced mechanical properties
from the addition of additives or co-spinning. Additionally,
doping of these PPV fibers with various dopants will be examined
to achieve optimal conductivities. The thermal gradient needed
to allow the fiber structure to remain intact after elimination
of all sulfinyl groups will also be evaluated. Finally, the
PPV-progenitor described here is currently used to prepare
PPV-coated poly(ester)s.
19 A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and
A. B. Holmes, Chem. Rev., 2009, 897–1091.
20 P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday,
A. B. Holmes, R. W. Jackson, A. Kraft and J. Chem, J. Chem.
Soc., Perkin Trans. 1, 1992, 3225–3231.
21 M. Kanbe and M. Okawara, J. Polym. Sci., Part A-1: Polym. Chem.,
1968, 6, 1058–1060.
22 R. A. Wessling, J. Polym. Sci., Polym. Symp., 1985, 72, 55–66.
23 R. W. Lenz, C. C. Han, J. Stenger-Smith and F. E. Karasz, J. Polym.
Sci., Part A: Polym. Chem., 1988, 26, 3241–3249.
24 I. Cosemans, L. Hontis, D. van Den Berghe, A. Palmaerts,
J. Wouters, T. J. Cleij, L. Lutsen, W. Maes, T. Junkers and
D. J. M. Vanderzande, Macromolecules, 2011, 44, 7610–7616.
25 A. J. J. M. van Breemen, D. J. M. Vanderzande, P. J. Adriaensens and
J. M. J. V. Gelan, J. Org. Chem., 1999, 64, 3106–3112.
26 A. J. J. M. van Breemen, A. C. J. Issaris, M. M. de Kok,
M. J. A. N. Van Der Borght, P. J. Adriaensens, J. M. J. V. Gelan
and D. J. M. Vanderzande, Macromolecules, 1999, 32, 5728–5735.
27 M. Van Der Borght, P. Adriaensens, D. Vanderzande and J. Gelan,
Polymer, 2000, 41, 2743–2753.
28 N. I. Craciun, Y. Zhang, A. Palmaerts, H. T. Nicolai, M. Kuik,
R. J. P. Kist, G. A. H. Wetzelaer, J. Wildeman, J. Vandenbergh,
L. Lutsen, D. Vanderzande and P. W. M. Blom, J. Appl. Phys.,
2010, 107, 124504.
29 S. Gillissen, M. Jonforsen, E. Kesters, T. Johansson, M. Theander,
M. R. Andersson, O. Ingana, L. Lutsen and D. Vanderzande,
Macromolecules, 2001, 34, 7294–7299.
30 L. Lutsen, I. Duyssens, H. Penxten and D. Vanderzande, Synth. Met.,
2003, 139, 589–592.
Acknowledgements
31 I. van Severen, F. Motmans, L. Lutsen, T. J. Cleij and
D. Vanderzande, Polymer, 2005, 46, 5466–5475.
32 F. Louwet, D. Vanderzande and J. Gelan, Synth. Met., 1995, 69, 509–
510.
33 P. Adriaensens, M. Van Der Borght, L. Hontis, A. Issaris, A. van
Breemen, M. de Kok, D. Vanderzande and J. Gelan, Polymer,
2000, 41, 7003–7009.
The authors would like to thank Ronald Beyer for help with
DSC and spinning discussions. Special thanks also go to Sabine
Henzler for SEM, and Ursula Wahl and Lisa Steudle for help
with FTIR.
34 W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Groenendaal and
E. W. Meijer, Polymer, 1996, 37, 5017–5047.
References
35 C.-T. Wang, C.-C. Kuo, H.-C. Chen and W.-C. Chen,
Nanotechnology, 2009, 20, 375604 (10 pp).
36 Y. Xin, Z. Huang, Z. Jiang, D. Li, L. Peng, J. Zhaid and D. Wang,
Chem. Commun., 2010, 46, 2316–2318.
37 C. Wang, E. Yan, G. Li, Z. Sun, S. Wang, Y. Tong, W. Li, Y. Xin,
Z. Huang and P. Yan, Synth. Met., 2010, 160, 1382–1386.
38 Y. Xin, Z. H. Huang, L. Peng and D. J. Wang, J. Appl. Phys., 2009,
105, 086106.
39 Y. Xin, Z. Huang, W. Li, Z. Jiang, Y. Tong and C. Wang, Eur. Polym.
J., 2008, 44, 1040–1045.
€
1 P. Bauerle and U. Mitschke, J. Mater. Chem., 2000, 10, 1471–1507.
2 A. Kraft, A. C. Grimsdale and A. B. Holmes, Angew. Chem., Int. Ed.,
1998, 37, 402–428.
3 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes,
R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos,
ꢁ
J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature, 1999, 397,
121–128.
4 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature,
1990, 347, 539–541.
€
40 Q. Zhao, Y. Xin, Z. Huang, S. Liu, C. Yang and Y. Li, Polymer, 2007,
48, 4311–4315.
5 J.-S. Kim, R. H. Friend, I. Grizzi and J. H. Burroughes, Appl. Phys.
Lett., 2005, 87, 023506.
41 W. Zhang, E. Yan, Z. Huang, C. Wang, Y. Xin, Q. Zhao and
Y. Tong, Eur. Polym. J., 2007, 43, 802–807.
42 P. Wutticharoenmongkol, P. Supphol, T. Srikhirin, T. Kerdcharoen
and T. Osotchan, J. Polym. Sci., Part B: Polym. Phys., 2005, 43,
1881–1891.
6 C. Yumusak and N. S. Sariciftci, Appl. Phys. Lett., 2010, 97, 033302.
7 E. B. Namdas, I. D. W. Samuel, D. Shukla, D. M. Meyer, Y. Sun,
B. B. Y. Hsu, D. Moses and A. J. Heeger, Appl. Phys. Lett., 2010,
96, 043304.
8 J. N. de Freitas, A. Privrikas, B. F. Nowacki, L. C. Akcelrud,
N. S. Sariciftci and A. F. Nogueira, Synth. Met., 2010, 160, 1654–
1661.
43 Y. Xin, Z. Huang, P. Yang, Z. Jiang, C. Wang and C. Shao, J. Appl.
Polym. Sci., 2009, 114, 1864–1869.
44 W. E. Teo and S. Ramakrishna, Nanotechnology, 2006, 17, R89–
R106.
9 A. Bedeloglu, A. Demir, Y. Bozkurt and N. S. Sariciftci, Text. Res. J.,
2010, 80, 1065–1074.
45 M. A. Masse, D. C. Martin, J. H. Petermann, E. Thomas and
F. E. Karasz, J. Mater. Sci., 1990, 25, 311–320.
10 G. G. Malliaras, J. R. Salem, P. J. Brock and J. C. Scott, J. Appl.
Phys., 1998, 84(3), 1583–1587.
46 D. C. Bradley, J. Phys. D: Appl. Phys., 1987, 20, 1389–1410.
47 D. R. Gragnon, F. E. Karasz, E. L. Thomas and R. W. Lenz, Synth.
Met., 1987, 20, 85.
48 D. D. C. Bradley, R. H. Friend, H. Lindenberger and S. Roth,
Polymer, 1986, 27, 1709.
11 F. Louwet, D. Vanderzande, J. J. Gelan and J. Mullens,
Macromolecules, 1995, 28, 1330–1331.
12 H. C. Chen, K. C. Lee, J. H. Lin and M. Koch, J. Mater. Process.
Technol., 2007, 192–193, 549–554.
13 P. T. Gibbs and H. H. Asada, J. Neuroeng. Rehabil., 2005, 2(7), 1–18.
14 B. P. Carbmann, Textiles: Fiber to Fabric, McGraw Hill, USA, 5th
edn, 1975, vol. 382, pp. 461–472.
49 T. Granier, E. L. Thomas and F. E. Karasz, J. Polym. Sci., Part B:
Polym. Phys., 1989, 27, 469–487.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 11851–11860 | 11859