T. Nilsson et al. / Archives of Biochemistry and Biophysics 494 (2010) 64–71
71
[5] J. Bylund, M. Hidestrand, M. Ingelman-Sundberg, E.H. Oliw, J. Biol. Chem. 275
(2000) 21844–21849.
[6] F.P. Guengerich, Z.L. Wu, C.J. Bartleson, Biochem. Biophys. Res. Commun. 338
(2005) 465–469.
[7] M.J. Holtzman, J. Turk, A. Pentland, J. Clin. Invest. 84 (1989) 1446–1453.
[8] K. Stark, H. Törmä, M. Cristea, E.H. Oliw, Arch. Biochem. Biophys. 409 (2003)
188–196.
[9] C. Lefèvre, B. Bouadjar, V. Ferrand, G. Tadini, A. Megarbane, M. Lathrop, J.F.
Prud’homme, J. Fischer, Hum. Mol. Genet. 15 (2006) 767–776.
[10] W.E. Boeglin, R.B. Kim, A.R. Brash, Proc. Natl. Acad. Sci. USA 95 (1998) 6744–
6749.
[11] P.M. Woollard, Biochem. Biophys. Res. Commun. 136 (1986) 169–176.
[12] N. Epp, G. Fürstenberger, K. Müller, S. de Juanes, M. Leitges, I. Hausser,
F. Thieme, G. Liebisch, G. Schmitz, P. Krieg, J. Cell Biol. 177 (2007)
173–182.
[13] G. Fürstenberger, N. Epp, K.M. Eckl, H.C. Hennies, C. Jorgensen, P. Hallenborg, K.
Kristiansen, P. Krieg, Prostaglandins Other Lipid Mediat. 82 (2007) 128–134.
[14] J.L. Moran, H. Qiu, A. Turbe-Doan, Y. Yun, W.E. Boeglin, A.R. Brash, D.R. Beier,
J. Invest. Dermatol. 127 (2007) 1893–1897.
[15] F. Jobard, C. Lefèvre, A. Karaduman, C. Blanchet-Bardon, S. Emre,
J. Weissenbach, M. Özgüc, M. Lathrop, J.F. Prud’homme, J. Fischer, Hum. Mol.
Genet. 11 (2002) 107–113.
[16] K.M. Eckl, S. de Juanes, J. Kurtenbach, M. Natebus, J. Lugassy, V. Oji, H. Traupe,
M.L. Preil, F. Martinez, J. Smolle, A. Harel, P. Krieg, E. Sprecher, H.C. Hennies,
J. Invest. Dermatol. 129 (2009) 1421–1428.
analysis was useful for analysis of HEETs in biological samples, as
illustrated in human corneal tissue.
8R,11R,12R-HEET is produced in human epidermis by 12R-LOX
and eLOX3 [19]. A linkage between mutations in the gene of
CYP4F22 and lamellar ichtyosis was reported by Lefèvre et al.,
and the authors proposed that CYP4F22 could be involved in oxida-
tion of 8R,11R,12R-HEET [9]. However, neither CYP4F22 nor
CYP4F8 appeared to oxidize 8,11R,12R-HEET. Recombinant CYP4F8
oxidized 10,11R,12R-HEET to its 18-hydroxy metabolite (Fig. 8A),
but 11S,14S,15S-HEET, 11R,14S,15S-HEET and 13S,14S,15S-HEET
were not substrates.
The selective oxygenation of 10,11R,12R-HEET is interesting, as
both 12R-LOX and CYP4F8 are up regulated in psoriatic lesions
[8,11]. To investigate whether the position of the epoxide group
at C11/C12 contributed to this selectivity, we tested the oxygena-
tion of EETs. We found that 8,9-EET and 11,12-EET were oxidized
at the
x3 position, but 14,15-EET was not a substrate. The position
of the epoxide group was apparently important. No significant
non-enzymatic hydrolysis of the HEETs or EETs was observed in
our enzyme assays.
HEETs can be hydrolyzed to triols by epoxide hydrolases in tis-
sues, and these products might be substrates of CY4F members. It
is therefore possible that CYP4F22 might be involved in a subse-
quent step in the 12R-LOX/eLOX3 pathway. However, CYP4F22 is
also expressed in testes, where 12R-LOX has not been described.
It is conceivable that CYP4F22 could be involved in oxygenation
[17] Z. Yu, C. Schneider, W.E. Boeglin, L.J. Marnett, A.R. Brash, Proc. Natl. Acad. Sci.
USA 100 (2003) 9162–9167.
[18] F. Lesueur, B. Bouadjar, C. Lefèvre, F. Jobard, S. Audebert, H. Lakhdar, L. Martin,
G. Tadini, A. Karaduman, S. Emre, S. Saker, M. Lathrop, J. Fischer, J. Invest.
Dermatol. 127 (2007) 829–834.
[19] Z. Yu, C. Schneider, W.E. Boeglin, A.R. Brash, Biochim. Biophys. Acta 1686 (3)
(2005) 238–247.
[20] K.M. Eckl, P. Krieg, W. Küster, H. Traupe, F. André, N. Wittstruck,
G. Fürstenberger, H.C. Hennies, Hum. Mutat. 26 (2005) 351–361.
[21] C. Lefèvre, B. Bouadjar, A. Karaduman, F. Jobard, S. Saker, M. Ozguc, M. Lathrop,
J.F. Prud’homme, J. Fischer, Hum. Mol. Genet. 13 (2004) 2473–2482.
[22] C.R. Pace-Asciak, Biochim. Biophys. Acta 1215 (1994) 1–8.
[23] S. Nigam, M.P. Zafiriou, R. Deva, R. Ciccoli, R. Roux-Van der Merwe, FEBS J. 274
(2007) 3503–3512.
[24] A.A. Spector, J. Lipid Res. 50 (Suppl.) (2009) S52–S56.
[25] P.A. Ladd, L. Du, J.H. Capdevila, R. Mernaugh, D.S. Keeney, J. Biol. Chem. 278
(2003) 35184–35192.
[26] Z. Yu, C. Schneider, W.E. Boeglin, A.R. Brash, Lipids 42 (2007) 491–497.
[27] L.A. Cowart, S. Wei, M.-H. Hsu, E.F. Johnson, M.U. Krishna, J.R. Falck, J.H.
Capdevila, J. Biol. Chem. 277 (2002) 35105–35112.
[28] J. Bylund, N. Finnstrom, E.H. Oliw, Biochem. Biophys. Res. Commun. 261 (1999)
169–174.
of other lipids in analogy with CYP4F8 and
x2 hydroxylation of
PGH in seminal vesicles [5]. Further studies of the function of
CYP4F22 in reproductive organs seem merited.
In summary, we report that recombinant CYP4F22 catalyzed
x3
hydroxylation of 20:4nꢀ6, whereas oxygenation of 8,11R,12R-
HEET was not detected. CYP4F8 oxidized 8,9-EET, 11,12-EET, and
10,11R,12R-HEET. The latter is formed from 12R-HPETE, which
suggests a functional link between CYP4F8 and 12R-LOX in
epidermis.
[29] K. Stark, B. Wongsud, R. Burman, E.H. Oliw, Arch. Biochem. Biophys. 441 (2005)
174–181.
Acknowledgments
[30] H. Yin, N.A. Porter, Antioxid. Redox Signal. 7 (2005) 170–184.
[31] I.V. Ivanov, S.G. Romanov, N.V. Groza, S. Nigam, H. Kuhn, G.I. Myagkova, Bioorg.
Med. Chem. 10 (2002) 2335–2343.
[32] S. Harju, H. Fedosyuk, K.R. Peterson, BMC Biotechnol. 4 (2004) 8.
[33] T.A. Dix, L.J. Marnett, J. Biol. Chem. 260 (1985) 5351–5357.
[34] E.H. Oliw, U. Garscha, T. Nilsson, M. Cristea, Anal. Biochem. 354 (2006) 111–
126.
[35] W.C. Chang, J. Nakao, H. Orimo, S. Murota, Biochem. J. 202 (1982) 771–776.
[36] E.H. Oliw, J. Chromatogr. 275 (1983) 245–259.
[37] U. Garscha, T. Nilsson, E.H. Oliw, J. Chromatogr, B. Analyt, Technol. Biomed. Life
Sci. 872 (2008) 90–98.
[38] T. Nakamura, D.L. Bratton, R.C. Murphy, J. Mass Spectrom. 32 (1997)
888–896.
[39] J. Bylund, J. Ericsson, E.H. Oliw, Anal. Biochem. 265 (1998) 55–68.
[40] R.M. Hanson, in: L.E. Overman (Ed.), Organic Reactions, John Wiley & Sons Inc.,
New York, 2002, pp. 1–157.
This work was supported by Vetenskapsrådet Medicin (3X-
06523), Stiftelsen Lars Hiertas Minne (KDB269/08), and The Knut
and Alice Wallenberg Foundation (2004.0123).
References
[1] D.R. Nelson, D.C. Zeldin, S.M. Hoffman, L.J. Maltais, H.M. Wain, D.W. Nebert,
Pharmacogenetics 14 (2004) 1–18.
[2] M. Fer, L. Corcos, Y. Dreano, E. Plee-Gautier, J.-P. Salaun, F. Berthou, Y. Amet, J.
Lipid Res. 49 (2008) 2379–2389.
[3] Y. Kikuta, M. Kato, Y. Yamashita, Y. Miyauchi, K. Tanaka, N. Kamada, M.
Kusunose, DNA Cell Biol. 17 (1998) 221–230.
[4] Y. Kikuta, Y. Miyauchi, E. Kusunose, M. Kusunose, DNA Cell Biol. 18 (1999)
723–730.