Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
(Scheme 4.4). Control reaction showed that this cyclization are
more likely to proceed via an anionic way (Scheme 4.5).
Based on above observations, a plausible mechanism for this
CH3OK-catalyzed cyclization of 1a is depicted in Scheme 5.
CH3OK deprotonates 1a to generate carbanion intermediate
M-1. The intramolecular nucleophilic cyclization of M-1
produces the intermediate M-2, followed by dehydration
isomerization reaction to provide the desired product 2a.
Obviously, M-2 hydrolyzes readily to starting material 1a,
accounting for the reaction why the reaction is sensitive to
water. On the other hand, M-2 can be oxidized to M-3 by
oxidant. Subsequently, nucleophilic attack of hydroxyl ion
toward M-3 to form acetal M-4 that is converted to M-5 with
elimination of water. Finally, M-5 was further oxidized to
product 3a.
Pawar and A. J. Domb, Eur. J. Med. Chem., 2015, 90, 707.
DOI: 10.1039/D0CC05862A
2
(a) J. Elguero In Comprehensive Heterocyclic Chemistry, Vol.
5 (Eds.: A. R. Katrizky, C. W. Rees), Pergamon: New York.,
1984, pp. 167–303; (b) J. Magano, M. Waldo,D. Greene and
E. Nord, Org. Process Res. Dev., 2008, 12, 877; (c) Jones P,
Altamura S, Boueres J, et al. J Med Chem., 2009, 52, 7170; (d)
M. J. Haddadin, W. E. Conrad and M. J. Kurth, Mini-Rev. Med.
Chem., 2012, 12, 1293.
(a) L. Yadav and S. Chaudhary, Org. Biomol. Chem., 2020, 18,
5927; (b) S. V. Kumar, S. llairaja, V. Satheesh, V. S. Vasantha
and T. Punniyamurthy, Org. Chem. Front., 2018, 5, 2630; (c)
W. Kim, H. Y. Kim and K. Oh, Org. Lett., 2020, 22, 6319; (d) C.
Guo, B. Li, H. Liu, X. Zhang, X. Zhang, and X. Fan, Org. Lett.,
2019, 21, 7189.
(a) P. Jones, S. Altamura, J. Boueres, F. Ferrigno, M. Fonsi, C.
Giomini, S. Lamartina, E. Monteagudo, J. M. Ontoria, M. V.
Orsale, M. C. Palumbi, S. Pesci, G. Roscilli, R. Scarpelli, C.
Schultz-Fademrecht, C. Toniatti and M. Rowley, J. Med.
Chem., 2009, 52, 7170–7185; (b) R. J. Steffan, E. M. Matelan,
S. M. Bowen, J. W. Ullrich, J. E. Wrobel, E. Zamaratski, L.
Kruger, A. L. Olsen Hedemyr, A. Cheng, T. Hansson, R. J.
Unwalla, C. P. Miller and P. P. Rhçnnstad, U. S. Pat. Appl.
Publ. US 2006030612 A1 20060209, 2006; (c) M. D. Angelis,
F. Stossi, K. A. Carlson, B. S. Katzenellenbogen and J. A.
Katzenellenbogen, J. Med. Chem., 2005, 48, 1132; (d) C. K.
Chung, P. G. Bulger, B. Kosjek, K. M. Belyk, N. Rivera, M. E.
Scott, G. R. Humphrey, J. Limanto, D. C. Bachert and K. M.
Emerson, Org. Process Res. Dev., 2014, 18, 215; (e) R. Halim,
M. Harding, R. Hufton, C. J. Morton, S. Jahangiri, B. R. Pool, T.
P. Jeynes, A. G. Draffan, M. J. Lilly and B. Frey, WO
2012051659A1, 2011; (f) Steffan , R. J.; Matelan, E. M. WO
2006/050006 A2, 2006.
(a) Y. Lian, R. G. Bergman, L. D. Lavis and J. A. Ellman, J. Am.
Chem. Soc., 2013, 135, 7122–7125; (b) Y. Cheng, G. Li, Y. Liu,
Y. Shi, G. Gao, D. Wu, J. Lan and J. You, J. Am. Chem. Soc.,
2016, 138, 4730–4738.
(a) C. Wu, Y. Fang, R. C. Larock and F. Shi, Org. Lett., 2010,
12, 2234; (b) M. R. Kumar, A. Park, N. Park and S. W. Lee,
Org. Lett., 2011, 13, 3542; (c) C.-D. Wang and R.-S. Liu, Org.
Biomol. Chem., 2012, 10, 8948.
(a) M. R. Kumar, A. Park, N. Park and S. W. Lee, Org. Lett.,
2011, 13, 3542; (b) N. E. Genung, L. Wei and G. E. Aspnes,
Org. Lett., 2014, 16, 3114.
(a) X. Yi, L. Jiao and C. Xi, Org. Biomol. Chem., 2016, 14, 9912;
(b) X. Yi and C. Xi, Tetrahedron., 2017, 73, 1311; (c) W. Hu, J.-
T. Yu, S. Liu, Y. Jiang and J. Cheng, Org. Chem. Front., 2017, 4,
22.
3
4
hydrolysis
Ph
N
H
Ph
N
N
N
-H2O
N
O
N
O
-OH
N
Ph
N
Ph
CH3OH
CH3OK
H
M-2
1a
M-1
2a
OH
[O]
CH3OK
N
Ph
N
Ph
N
Ph
N
-H2O
N
N
OH
N
[O]
N
Ph
OH
CHO
M-5
CO2H
3a
OH
M-3
M-4
OH
Scheme 5. Proposed mechanism.
5
6
In summary, we have successfully disclosed a green and
efficient method for the synthesis of 2-aryl-2H-indazoles
through base-catalyzed benzyl C-H deprotonation and
cyclization of ortho-alkyl substituted azoxybenzenes. In
contrast to previous transition-metal-catalyzed strategy, this
protocol employs cheap CH3OK as the base, eliminates the
need for oxidants and transition-metal catalysts. Remarkably,
the synthetic value and potential practicability of this protocol
are demonstrated by the synthesis of several fluorescent,
bioactive molecules and gram-scale reactions respectively.
We are grateful for financial support from the National
Natural Science Foundation of China (21901187, 21672164 and
21372177).
7
8
9
Y. Lian, R. G. Bergman, L. D. Lavis and J. A. Ellman, J. Am.
Chem. Soc., 2013, 135, 7122.
10 J. R. Hummel and J. A. Ellman, J. Am. Chem. Soc., 2015, 137,
490.
11 X. Geng and C. Wang, Org. Lett., 2015, 17, 2434.
12 H. Li, P. Li and L. Wang, Org. Lett., 2013, 15, 620.
13 S. Cai, S. Lin, X. Yi and C. Xi. J, Org. Chem., 2017, 82, 512.
14 H. Li, P. Li, Q. Zhao and L. Wang, Chem. Commun., 2013, 49,
9170.
Conflicts of interest
There are no conflicts to declare.
15 M. Sun, L.-K. Hou, X.-X. Chen, X.-J. Yang, W. Sun and Y.-S.
Zang, Adv. Synth. Catal., 2014, 356, 3789.
16 Z. Long, Z. Wang, D. Zhou, D. Wan and J. You, Org. Lett.,
2017, 19, 2777.
17 S. A. Ohnmacht, A. J. Culshaw and M. F. Greaney, Org. Lett.,
2010, 12, 224.
18 B. Haag, Z. Peng and P. Knochel, Org. Lett., 2009, 11, 4270.
19 (a) G. Bogonda, H. Y. Kim and K. Oh, Org. Lett., 2018, 20,
2711; (b) S. Xia, L. Gan, K. Wang, Z. Li and D. Ma, J. Am. Chem.
Soc., 2016, 138, 13493.
Notes and references
1
(a) G. P. Lahm, D. Cordova and J. D. Barry, Bioorg. Med.
Chem., 2009, 17, 4127; (b) Y. Nomoto, H. Takai, T. Ohno, K.
Nagashima, K. Yao, K. Yamada, K. Kubo, M. Ichimura, A.
Mihara and H. Kase, J. Med. Chem., 1996, 39, 297; (c) R.-H. Li,
C.-K. Ding, Y.-N. Jiang, Z.-C. Ding, X.-M. An, H.-T. Tang, Q.-W.
Jing and Z.-Pi. Zhan, Org. Lett., 2016, 18, 1666; (d) H.-T. Tang,
K. Xiong, R.-H. Li, Z.-C. Ding and Z.-P. Zhan, Org. Lett., 2015,
17, 326; e) M. J. Haddadin, W. E. Conrad and M. J. Kurth,
Mini-Rev. Med. Chem., 2012, 12, 1293; f) D. D. Gaikwad, A. D.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins