10.1002/anie.201808892
Angewandte Chemie International Edition
COMMUNICATION
be simultaneously operative in a specific type of substrates (vide
infra). A sterically congested substrate having triphenyl moiety
underwent the cyclization without difficulty leading to 12g in
excellent yield. Naphthylethyl dioxazolone was also efficiently
amidated to afford tricyclic dihydroquinolinone (12h). Reaction of
ortho-bromo-substituted phenylethyl dioxazolone proceeded in
satisfactory yield (12i). Significantly, an analogous pathway is
likely operative in a 5-membered cyclization of 11j, and a skeletal-
rearranged indolinone product 12j was obtained in moderate yield.
It needs to be emphasized that this result is consistent with the
observation of the 4-membered spirocyclization (7 in Scheme 5a).
Keywords: CH amidation
rearrangement • iridium catalysis
•
spiro-lactams
•
skeletal
[1]
For selected reviews on the CH functionalization, see: a) H. M. L.
Davies, J, R. Manning, Nature 2008, 451, 417; b) D. A. Colby, R. G.
Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; c) P. B. Arockiam,
C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; d) K. M. Engle,
T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788; e) J. F.
Hartwig, Acc. Chem. Res. 2012, 45, 864; f) S. R. Neufeldt, M. S. Sanford,
Acc. Chem. Res. 2012, 45, 936; g) G. Y. Song, F. Wang, X. W. Li, Chem.
Soc. Rev. 2012, 41, 3651; h) N. Kuhl, N. Schroder, F. Glorius, Adv. Synth.
Catal. 2014, 356, 1443; i) O. Daugulis, J. Roane, L. D. Tran, Acc. Chem.
Res. 2015, 48, 1053; j) C. Borie, L. Ackermann, M. Nechab, Chem. Soc.
Rev. 2016, 45, 1368; k) T. Gensch, M. N. Hopkinson, F. Glorius, J.
Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900.
[2]
For selected reviews on the CH amination, see: a) A. Armstrong, J. C.
Collins, Angew. Chem. Int. Ed. 2010, 49, 2282; Angew. Chem. 2010, 122,
2332; b) J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012,
45, 911; c) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed.
2012, 51, 7384; Angew. Chem. 2012, 124, 7498; d) M.-L. Louillat, F. W.
Patureau, Chem. Soc. Rev. 2014, 43, 901; e) J. Jiao, K. Murakami, K.
Itami, ACS Catal. 2016, 6, 610; f) Y. Park, Y. Kim, S. Chang, Chem. Rev.
2017, 117, 9247; g) N. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann,
ACS Catal. 2018, 8, 7086.
[3]
[4]
a) X.-Q. Yu, J.-S. Huang, X.-G. Zhou, C.-M. Che, Org. Lett. 2000, 2,
2233; b) S. M. Paradine, J. R. Griffin, J. Zhao, A. L. Petronico, S. M. Miller,
M. C. White, Nat. Chem. 2015, 7, 987; c) N. D. Chiappini, J. B. C. Mack,
J. Du Bois, Angew. Chem. Int. Ed. 2018, 57, 4956; Angew. Chem. 2018,
130, 5050.
a) B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey, T. G. Driver, J.
Am. Chem. Soc. 2007, 129, 7500; b) M. Shen, B. E. Leslie, T. G. Driver,
Angew. Chem. Int. Ed. 2008, 47, 5056; Angew. Chem. 2008, 120, 5134;
c) Q. Nguyen, K. Sun, T. G. Driver, J. Am. Chem. Soc. 2012, 134, 7262;
d) E. T. Hennessy, T. A. Betley, Science 2013, 340, 591; e) C. K. Prier,
R. K. Zhang, A. R. Buller, S. Brinkmann-Chen, F. H. Arnold, Nat. Chem.
2017, 9, 629.
Scheme 7. Substrates scope without skeletal rearrangement. Reaction
conditions: substrate (0.1 mmol), Ir catalyst (2 mol %), and NaBArF4 (2 mol %)
in HFIP (1.2 mL). [a] 5 Mol % of catalyst was used.
[5]
[6]
a) A. John, J. Byun, K. M. Nicholas, Chem. Commun. 2013, 49, 10965;
b) M. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. Ma, L. Kürti,
J. R. Falck, Science 2016, 353, 1144.
a) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297; b) S. Bräse,
C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44,
5188; Angew. Chem. 2005, 117, 5320; c) D. Li, T. Wu, K. Liang, C. Xia,
Org. Lett. 2016, 18, 2228.
On the other hand, a certain type of substrates was shown
to give benzolactams without a skeletal rearrangement (Scheme
7). For example,
a meta-methoxy-substituted phenylethyl
[7]
S. Y. Hong, Y. Park, Y. Hwang, Y. B. Kim, M.-H. Baik, S. Chang, Science
2018, 359, 1016.
dioxazolone (13a) was cyclized quantitatively to give two
regioisomers 3 and 14a (1.2:1). These products can be formed
via either direct SEAr pathway or a tandem process of spiro-
cyclization and following CN bond migration. Likewise, bromo-
substituted substrate 13b showed a similar product distribution
pattern (14b and 12i). Although, at the current stage, we are
unable to distinguish which pathway is mainly operative for these
substrates, computational analysis with substrate 13a revealed
that SEAr path is a bit more favorable than the spirocyclization.[15]
In conclusion, we have elucidated the mechanistic details of
iridium-catalyzed arene CH amidation. Experimental and
computational analysis revealed that the reaction proceeds via a
tandem process of spirocyclization and following CC bond
migration instead of widely accepted pathways. Based on the
mechanistic findings, a highly efficient Ir-catalyzed synthetic route
to spiro-lactams and benzolactams is now developed for the first
time. This preparative process is anticipated to find its utility in
synthetic and medicinal chemistry.
[8]
[9]
B. J. Stokes, K. J. Richert, T. G. Driver, J. Org. Chem. 2009, 74, 6442.
a) G. Brasche, S. Buchwald, Angew. Chem. Int. Ed. 2008, 47, 1932;
Angew. Chem. 2008, 120, 1958; b) S. Chiba, L. Zhang, S. Sanjaya, G.
Y. Ang, Tetrahedron 2010, 66, 5692; c) R. Singh, K. Nagesh, M.
Parameshwar, ACS Catal. 2016, 6, 6520.
[10] For selected examples of the five-membered ring synthesis via outer-
sphere pathway, see: a) K. Isomura, K. Uto, H. Taniguchi, J. Chem. Soc.,
Chem. Commun. 1977, 664; b) S. Chiba, G. Hattori, K. Narasaka, Chem.
Lett. 2007, 36, 52; c) W. G. Shou, J. Li, T. Guo, Z. Lin, G. Jia,
Organometallics 2009, 28, 6847; d) I. T. Alt, B. Plietker, Angew. Chem.
Int. Ed. 2016, 55, 1519; Angew. Chem. 2016, 128, 1542; e) S. K. Das, S.
Roy, H. Khatua, B. Chattopadhyay, J. Am. Chem. Soc. 2018, 140, 8429.
[11] a) S. A. Glover, A. Goosen, C. V. McClei, J. L. Schoonraad, Tetrahedron
1987, 43, 2577; b) M. Kawase, T. Kitamura, Y. Kikugawa, J. Org. Chem.
1989, 54, 3394; c) D. Liang, W. Yu, N. Nguyen, J. R. Deschamps, G. H.
Imler, Y. Li, A. D. MacKerell, Jr., C. Jiang, F. Xue, J. Org. Chem. 2017,
82, 3589.
[12] a) V. P. Vitullo, E. A. Logue, J. Org. Chem. 1972, 37, 3339; b) J. N. Marx,
J. C. Argyle, L. R. Norman, J. Am. Chem. Soc. 1974, 96, 2121; c) A.
Fischer, G. N. Henderson, J. Chem. Soc., Chem. Commun. 1979, 279.
[13] a) D. J. Wardrop, A. Basak, Org. Lett. 2001, 3, 1053; b) D. J. Wardrop,
M. S. Burge, W. Zhang, J. A. Ortı´z, Tetrahedron Lett. 2003, 44, 2587.
[14] For selected examples of the electrophilic nitrogen triggered CN bond
forming dearomatization, see: a) K. Tanaka, Y. Mori, K. Narasaka, Chem.
Lett. 2004, 33, 26; b) J. J. Farndon, X. Ma, J. F. Bower, J. Am. Chem.
Soc. 2017, 139, 14005; c) X. Ma, J. J. Farndon, T. A. Young, N. Fey, J.
F. Bower, Angew. Chem. Int. Ed. 2017, 56, 14531; Angew. Chem. 2017,
129, 14723.
Acknowledgements
This research was supported by the Institute for Basic Science
(IBS-R010- D1). Single crystal x-ray diffraction experiments of
compound 3, 8, and 10a were performed at the BL2D-SMC in
Pohang Accelerator Laboratory with synchrotron radiation.
[15] See the Supporting Information for details
[16] CCDC 1859413 (3), 1859414 (5a), 1859411 (8), 1859416 (10a),
1859415 (10b), 1859410 (12i), and 1859412 (12j) contain the
supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Centre.
4
This article is protected by copyright. All rights reserved.