Crystallographic data for trans-10a. C84H150I14N12P2Pt + sol-
vent, FW = 3361.79,‡ needle, 0.48 ¥ 0.15 ¥ 0.12 mm3, triclinic,
Chem., Int. Ed., 2005, 44, 6816–6825; (c) A. J. Sandee and J. N. H.
Reek, Dalton Trans., 2006, 3385–3391.
3 Some recent examples: (a) C. Machut, J. Patrigeon, S. Tilloy, H. Bricout,
F. Hapiot and E. Monflier, Angew. Chem., Int. Ed., 2007, 46, 3040–3042;
(b) A. C. Laungani, J. M. Slattery, I. Krossing and B. Breit, Chem.–
Eur. J., 2008, 14, 4488–4502; (c) F. W. Patureau, M. Kuil, A. J. Sandee
and J. N. H. Reek, Angew. Chem., Int. Ed., 2008, 47, 3180–3183 and
references therein; (d) C. G. Oliveri, P. A. Ulmann, M. J. Wiester and
C. A. Mirkin, Acc. Chem. Res., 2008, 41, 1618–1629; (e) S. A. Moteki
and J. M. Takacs, Angew. Chem., Int. Ed., 2008, 47, 894–897.
4 (a) P. A. Duckmanton, A. J. Blake and J. B. Love, Inorg. Chem., 2005,
44, 7708–7710; (b) L. A. Knight, Z. Freixa, P. W. N. M. Van Leeuwen
and J. N. J. Reek, Organometallics, 2006, 25, 954–960; (c) Z. Freixa and
P. W. N. M. Van Leeuwen, Coord. Chem. Rev., 2008, 252, 1755–1786.
5 H. Gulya´s, J. Benet-Buchholz, E. C. Escudero-Adan, Z. Freixa and
P. W. N. M. Van Leeuwen, Chem.–Eur. J., 2007, 13, 3424–3430.
6 (a) B. Cornils and E. G. Kuntz, J. Organomet. Chem., 1995, 502, 177–
186; (b) O. Herd, D. Hoff, K. W. Kottsieper, C. Liek, K. Wenz, O. Stelzer
and W. S. Sheldrick, Inorg. Chem., 2002, 41, 5034–5042; (c) E. Genin,
R. Amengual, V. Michelet, M. Savignac, A. Jutand, L. Neuville and
J. P. Geneˆt, Adv. Synth. Catal., 2004, 346, 1733–1741; (d) L. R. Moore,
E. C. Western, R. Craciun, J. M. Spruell, D. A. Dixon, K. P. O’Halloran
and K. H. Shaughnessy, Organometallics, 2008, 27, 576–593.
7 (a) R. T. Smith and M. C. Baird, Inorg. Chim. Acta, 1982, 62, 135–139;
(b) E. Renaud, R. B. Russell, S. Fortier, S. J. Brown and M. C. Baird,
J. Organomet. Chem., 1991, 419, 403–415; (c) T. Okano, N. Harada and
J. Kiji, Chem. Lett., 1994, 1057–1060; (d) B. Mohr, D. M. Lynn and
R. H. Grubbs, Organometallics, 1996, 15, 4317–4325; (e) A. Hessler and
O. Stelzer, J. Org. Chem., 1997, 62, 2362–2369; (f) F. P. Pruchnik and
P. Smolenski, Appl. Organomet. Chem., 1999, 13, 829–836; (g) C. C.
Brasse, U. Englert and A. Salzer, Organometallics, 2000, 19, 3818–
3823; (h) R. B. DeVasher, L. R. Moore and K. H. Shaughnessy, J. Org.
Chem., 2004, 69, 7919–7927; (i) M. P. Coles and P. B. Hitchcock, Chem.
Commun., 2007, 5229–5231.
¯
˚
P1(no. 2), a = 14.5266(2), b = 16.8586(1), c = 17.1335(2) A, a =
◦
3
˚
101.202(1), b = 103.197(1), g = 113.487(1) , V = 3550.37(8) A ,
Z = 1, Dx = 1.57 g cm-3,‡ m = 4.09 mm-1.‡ 52744 reflections
were measured up to a resolution of (sin q/l)max = 0.65 A .
-1
˚
16172 reflections were unique (Rint = 0.030), of which 13846 were
observed [I > 2s(I)]. 558 parameters were refined. R1/wR2 [I
> 2s(I)]: 0.0394/0.1132. R1/wR2 [all refl.]: 0.0466/0.1172. S =
1.104. Residual electron density found between -1.93 and 2.77
-3
3
˚
˚
eA . SQUEEZE details: one void of 284 A filled with 94 electrons
3
˚
and two voids of 215 A filled with 72 electrons (all numbers are
given per unit cell).
Refinement details for [PtI3(1)]I5. The asymmetric unit of
[PtI3(1)]I5 contains one [PtI3(1)]5+ complex, two lattice deuterated
water molecules and five lattice iodide counter anions. The lattice
water molecules and some lattice iodide ions (I4, I5 and I8) form
˚
weak hydrogen bond O–H ◊ ◊ ◊ I interactions (O ◊ ◊ ◊ I ª 3.49–3.55 A).
The lattice iodide I7 is found at sites of twofold axial symmetry and
the SHELX population was constrained to be 0.5. The occupancy
factors of the remaining iodides I4, I5, I6, I8 and I9 were refined
using the FVAR (free variable) instructions. The sum of these
occupancy factors were constrained to be 4.5 using the SUMP
instruction as a requirement for charge balance. The free variables
for the occupancy factors of I4, I5, I6, I8 and I9 refined to 0.998(2),
0.997(2), 0.991(2), 0.972(2) and 0.541(2), respectively. The final
difference Fourier map is relatively flat except for some peaks
8 (a) Reviews: W. A. Herrmann and C. W. Kohlpaintner, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 1524–1544; (b) O. Stelzer, S. Rossenbach, D.
Hoff, M. Schreuder-Goedheijt, P. C. J. Kamer, J. N. H. Reek and
P. W. N. M. Van Leeuwen, Multiphase homogeneous catalysis, Wiley-
VCH, 2005, 1, 66-82; (c) K. H. Shaughnessy, Eur. J. Org. Chem., 2006,
1827–1835; (d) D. M. Chisholm and J. S. McIndoe, Dalton Trans., 2008,
3933–3945; (e) K. H. Shaughnessy, Chem. Rev., 2009, 109, 643–710.
9 (a) R. Kreiter, R. J. M. Klein Gebbink and G. van Koten, Tetrahedron,
2003, 59, 3989–3997; (b) D. J. M. Snelders, R. Kreiter, J. J. Firet, G. van
Koten and R. J. M. Klein Gebbink, Adv. Synth. Catal., 2008, 350, 262–
266; (c) D. J. M. Snelders, G. van Koten and R. J. M. Klein Gebbink,
J. Am. Chem. Soc., 2009, 131, 11407–11416; (d) D. J. M. Snelders, C.
Van Der Burg, M. Lutz, A. L. Spek, G. van Koten and R. J. M. Klein
Gebbink, ChemCatChem, 2010, 2, 1425–1437; (e) D. J. M. Snelders, K.
Kunna, C. Mu¨ller, D. Vogt, G. van Koten and R. J. M. Klein Gebbink,
Tetrahedron: Asymmetry, 2010, 21, 1411–1420.
-3
˚
˚
found near I9 (2.2–3.6 A), which are as large as 3.3–4.1 e A . Such
large peaks may result from disorder of the iodide I9 although
there is no sign of disorder in its atomic displacement parameters,
or may result from very disordered solvent molecules which may
be partially contained in one void [(0.5, 0.171, 0.25)] found near
I9.
Crystallographic data for [PtI3(1)]I5. C42H79I8N6O2PPt, FW =
1941.37, plate, 0.24 ¥ 0.18 ¥ 0.06 mm3, monoclinic, C2/c (no. 15),
˚
a = 17.2539(5), b = 17.4111(5), c = 41.5254(9) A, b = 90.2090(10),
3
-3
-1
˚
V = 12474.5(6) A , Z = 8, Dx = 2.07 g cm , m = 6.27 mm . 67316
reflections were measured up to a resolution of (sin q/l)max
=
-1
˚
0.59 A . 10730 reflections were unique (Rint = 0.044), of which 9090
were observed [I > 2s(I)]. 581 parameters were refined. R1/wR2
[I > 2s(I)]: 0.0369/0.0813. R1/wR2 [all refl.]: 0.0499/0.0862.
10 I. M. Al-najjar, Inorg. Chim. Acta, 1987, 128, 93–104.
11 (a) A. W. Kleij, R. van de Coevering, R. J. M. Klein Gebbink, A.
Noordman, A. L. Spek and G. van Koten, Chem.–Eur. J., 2001, 7, 181–
191; (b) R. van de Coevering, P. C. A. Bruijnincx, M. Lutz, A. L. Spek,
G. van Koten and R. J. M. Klein Gebbink, New J. Chem., 2007, 31,
1337–1348.
S = 1.085. Residual electron density found between -1.15 and
-3
˚
4.07 eA .
12 Isomerization of square planar Pt(II) complexes is catalyzed by free
phosphine: see ref. 29.
13 No other peak appeared, indicating that these species had irreversibly
converted to trans-8a and trans-8b, respectively. When trans-8a was
synthesized starting from PtCl2(DMSO)2 as the Pt precursor, this minor
product did not form, indicating that it is a thermally labile intermediate
species in the reactions of these phosphines with PtCl2(cod).
14 R. Kreiter, J. J. Firet, M. J. J. Ruts, M. Lutz, A. L. Spek, R. J. M. Klein
Gebbink and G. van Koten, J. Organomet. Chem., 2006, 691, 422–432.
15 When a solution of 9b in toluene-d8 was heated in the presence of a
small quantity of free 4, the cis-trans equilibrium shifted in favour
of the trans-isomer. Isomerization occurred at temperatures higher
than 65 ◦C. At 105 ◦C, the cis : trans ratio had shifted from 85 : 15
to 55 : 45. After cooling, the original product distribution was restored.
No isomerization occurred in the absence of free 4.
16 The reaction of PtCl2(DMSO)2 with one equiv. of PPh3 in CDCl3
was also performed; a mixture of cis- and trans-PtCl2(PPh3)2 and cis-
PtCl2(DMSO)(PPh3) was obtained (approximate ratio: 3 : 4 : 3). The
complex cis-PtCl2(DMSO)(PPh3) was identified by a characteristic
Acknowledgements
The authors thank Cees Versluis and Ronald van Ooijen (Bijvoet
Institute, Biomolecular Mass Spectrometry, Utrecht University)
for the ESI-MS analyses.
Notes and references
1 (a) D. J. M. Snelders, G. van Koten and R. J. M. Klein Gebbink,
Chem. Eur. J., 2011, 17, 42–57; (b) P. W. N. M. Van Leeuwen (Editor),
Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.
2 (a) Reviews: M. J. Wilkinson, P. W. N. M. Van Leeuwen and J. N. H.
Reek, Org. Biomol. Chem., 2005, 3, 2371–2383; (b) B. Breit, Angew.
‡ excluding the unresolved entity contribution.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 2588–2600 | 2599
©