W. Chen et al. / Tetrahedron Letters 51 (2010) 4175–4178
4177
at ꢁ20 °C, and the reaction mixture was stirred for 48 h. The pure
-hydroxy phosphonate 3a was afforded by column chromatogra-
2OTf-
a
phy on silica gel (ethyl acetate/petroleum ether 1:1 ꢂ 5:1) in 90%
yield with 78% ee. The ee was determined by HPLC analysis using
a Chiral AS-H column (hexane/2-propanol 80:20, 1.0 mL/min,
UV = 210 nm; tmajor = 7.13 min, tminor = 8.92 min). White solid,
*
*
O
O
O
O
O
RCHO + HPO(OEt)2
Yb
*
*
½
a 2D0
= +27.4 (c 0.175, CHCl3).
ꢃ
Yb
*
*
O
O
O
O
O
OTf
OTf
R
CH PH(OEt)2
Acknowledgments
A
B
*
We appreciate the National Natural Science Foundation of Chi-
na (No. 20872096), PCSIRT (No. IRT0846), and National Basic Re-
search Program of China (973 Program) (No. 2010CB833300) for
financial support and Sichuan University Analytical & Testing Cen-
ter for NMR spectroscopic analysis.
2OTf-
O
O
O
OH
Yb
*
*
O
O
R
P(OEt)2
O
*
O
H
N
R
CH P(OEt)2
C
2OTf-
Supplementary data
*
*
Supplementary data associated with this article can be found, in
O
O
O
O
Yb
Yb
*
*
*
*
O
O
O
O
OH
O
References and notes
N
H
O
O
CH
P(OEt)2
R
CH P(OEt)2
R
1. (a)The Role of Phosphonates in Living Systems; Hilderbrand, R. L., Ed.; RCRC Press:
Boca Raton, FL, 1983; (b) Engel, R. Chem. Rev. 1977, 77, 349; (c)
Hammerschmidt, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 341.
2. (a) Yudelevich, V. I.; Solonkina, L. B.; Sokolov, L. B.; Ionin, B. I.; Komarov, E. V.;
Lifshits, M. I.; Karpenko, M. P. Zh. Obshch. Khim. 1982, 52, 801; (b) Stowasser, B.;
Budt, K. H.; Li, J. Q.; Peyman, A.; Rrppert, D. Tetrahedron Lett. 1992, 33, 6625; (c)
Moore, M. L.; Dreyer, G. B. Prespect. Drug Discov. Des. 1993, 1, 85; (d) Sikorski, J.
A.; Miller, M. J.; Braccolino, D. S.; Cleary, D. G.; Corey, S. D.; Font, J. L.; Gruys, K.
J.; Han, C. Y.; Lin, K. C.; Pansegrau, P. D.; Ream, J. E.; Schnur, D.; Shah, A.;
Walker, M. C. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 76, 375.
D
E
N
H
Scheme 1. Proposed mechanism of the hydrophosphonylatin of aldehydes.
generated a transition state similar to N,N0-dioxide-Sc(III), and all
the oxygens of N-oxides coordinated with Yb(III).13
3. Wynberg, H.; Smaardijk, A. A. Tetrahedron Lett. 1983, 24, 5899.
4. Uraguchi, D.; Ito, T.; Ooi, T. J. Am. Chem. Soc. 2009, 131, 3836.
As a high oxophilic Lewis acid, the L2-Ytterbium(III) complex
could coordinate with aldehyde and diethyl phosphate efficiently.
In addition, Lewis acid favored the conversion of the phosphonate
tautomer into the phosphite tautomer (active). After a tautomeric
arrangement, the phosphite moiety of intermediate C showed en-
ough nucleophilicity to undergo the hydrophosphonylation suc-
cessfully at 0 °C. However, the reactivity of C sharply decreased,
when the temperature was lowered to ꢁ20 °C. It is supposed that
pyridine could enhance the nucleophilicity of the phosphorus atom
by trapping the proton of phosphite tautomer,14 and higher reac-
tive intermediate D, E could form, in which C–P bond formation
could process smoothly at ꢁ20 °C. Accordingly, the reaction could
proceed in the route of A–B–C at 0 °C without pyridine,15 while the
reaction could proceed in the route of A–B–D–E in the presence of
pyridine.
In conclusion, we have developed an asymmetric hydrophos-
phonylation of aldehydes using N,N0-dioxide L2-Ytterbium(III)
complex as a catalyst with pyridine as an additive. The reaction
underwent smoothly to give the corresponding adducts in good
to excellent yields (up to 99%) with good enantioselectivities (up
to 82% ee). In addition, a proposed catalyst cycle was depicted.
This, along with the expansion of N,N0-dioxides to other classes
of nucleophiles and electrophiles, constitutes the subject of our
sustained efforts.
5. Chiral lanthanoid complexes: (a) Yokomatsu, T.; Yamagishi, T.; Shibuya, S.
Tetrahedron: Asymmetry 1993, 4, 1783; (b) Rath, N. P.; Spilling, C. D. Tetrahedron
Lett. 1994, 35, 227; (c) Yokomatsu, T.; Yamagishi, T.; Shibuya, S. J. Chem. Soc.,
Perkin Trans. 1 1997, 1527; (d) Sasai, H.; Bougauchi, M.; Arai, T.; Shibasaki, M.
Tetrahedron Lett. 1997, 38, 2717; (e) Qian, C. T.; Huang, T. S.; Zhu, C. J.; Sun, J. J.
Chem. Soc., Perkin. Trans. 1 1998, 2097; Chiral aluminum complexes: (f) Arai, T.;
Bougauchi, M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1996, 61, 2926; (g)
Yamagishi, T.; Yokomatsu, T.; Suemune, K.; Shibuya, S. Tetrahedron 1999, 55,
12125; (h) Ward, C. V.; Jiang, M. L.; Kee, T. P. Tetrahedron Lett. 2000, 41, 6181;
(i) Nixon, T. D.; Dalgarno, S.; Ward, C. V.; Jiang, M. L.; Halcrow, M. A.; Kilner, C.;
Mark, T. P.; Kee, T. P. C.R. Chim. 2004, 7, 809; (j) Saito, B.; Katsuki, T. Angew.
Chem., Int. Ed. 2005, 44, 4600; (k) Saito, B.; Egami, H.; Katsuki, T. J. Am. Chem.
Soc. 2007, 129, 1978; (l) Suyama, K.; Sakai, Y.; Matsumoto, K.; saitao, B.;
Katsuki, T. Angew. Chem., Int. Ed. 2010, 49, 797; (m) Gou, S. H.; Zhou, X.; Wang,
J.; Liu, X. H.; Feng, X. M. Tetrahedron 2008, 64, 2864; (n) Zhou, X.; Liu, X. H.;
Yang, X.; Shang, D. J.; Xin, J. G.; Feng, X. M. Angew. Chem., Int. Ed. 2008, 47, 392;
(o) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521; Chiral titanium
complexes: (p) Yokomatsu, T.; Yamagishi, T.; Shibaya, S. Tetrahedron:
Asymmetry 1993, 4, 1779; (q) Rowe, B. J.; Spilling, C. D. Tetrahedron:
Asymmetry 2001, 12, 1701; (r) Yang, F.; Zhao, D. B.; Lan, J. B.; Xi, P. H.; Yang,
L.; Xiang, S. H.; You, J. S. Angew. Chem., Int. Ed. 2008, 120, 5728.
6. (a) Yang, X.; Zhou, X.; Lin, L. L.; Chang, L.; Liu, X. H.; Feng, X. M. Angew. Chem.,
Int. Ed. 2008, 47, 7079; (b) Zheng, K.; Shi, J.; Liu, X. H.; Feng, X. M. J. Am. Chem.
Soc. 2008, 130, 15770; (c) Li, X.; Liu, X. H.; Fu, Y. Z.; Wang, L. J.; Zhou, L.; Feng, X.
M. Chem. Eur. J. 2008, 14, 4796; (d) Wang, W. T.; Liu, X. H.; Cao, W. D.; Wang, J.;
Lin, L. L.; Feng, X. M. Chem. Eur. J. 2010, 16, 1664.
7. Molecular sieves were added to remove the water that decreased reaction
yield, see 5(h).
8. Aliphatic aldehydes were also tested in the reaction, but only poor results were
obtained.
9. Benzaldehyde and phenylglyoxal did not react with diethyl phosphate in the
presence of 16
10. The catalyst promoted the reaction smoothly in 90% yield with 68% ee in the
presence of 10 mol % L2-Yb(III) complex, 20 mg 4 Å MS at 0 °C. When 0.8
lL pyridine, 20 mg 4 Å MS at ꢁ20 °C.
2. General procedure
lL
pyridine was added, the yield increased to 99%, but no product was detected at
all in the absence of pyridine at ꢁ20 °C.
Typical procedure for the enantioselective hydrophosphonylation of
aldehydes. The mixture of Yb(OTf)3 (6.2 mg), 4 Å molecular sieves
(20 mg), L2 (6.5 mg), and CH2Cl2 (0.5 mL) was stirred in a test tube
under nitrogen atmosphere at room temperature for 30 min. Then
aldehyde 1a (0.1 mmol) was added and stirred for 20 min. The
11. The reaction underwent smoothly, giving product in 90% yield with 78% ee in
the presence of 10 mol % L2-Yb(III) complex, 20 mg 4 Å MS, 16
ꢁ20 °C.
lL pyridine at
12. (a) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187; (b) Kobayashi, S.;
Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev. 2002, 102, 2227.
13. Liu, Y. L.; Shang, D. J.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15,
2055.
diethyl phosphate (0.15 mmol) and pyridine (16 lL) were added