Organometallics 1998, 17, 1257-1259
1257
Selective Lin ea r Cou p lin g Rea ction of Acetylen e a n d
Acr ylon itr ile Ca ta lyzed by th e Well-Defin ed
Meta lla cyclop en ta d ien e Com p lex
C5Me5(P P h 3)(Cl)Ru CHdCHCHdCH
Chae S. Yi,* J . Roman Torres-Lubian, and Nianhong Liu
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881
Arnold L. Rheingold and Ilia A. Guzei
Department of Chemistry, The University of Delaware, Newark, Delaware 19716-2522
Received February 2, 1998
Summary: The metallacyclopentadiene complex C5Me5-
ruthenacyclopentadiene species C5Me5(PPh3)(Cl)Ru-
(PPh3)(Cl)RuCHdCHCHdCH (1) was found to catalyze
the linear coupling reaction of acetylene and acrylonitrile
to give predominantly 2(E),4(Z),6-heptatrienenitrile (3;
TON ) 15, 85% selectivity). The coupling reaction is
proposed to occur via an initial PPh3 dissociation from
1 and the subsequent insertion of acrylonitrile.
CHdCHCHdCH (1) selectively catalyzes the 2:1 linear
coupling reaction of acetylene and acrylonitrile to form
heptatrienenitrile.
We recently reported the synthesis of the chiral
ruthenium-vinylidene complex C5Me5(PPh3)(Cl)Rud
CdCHPh from the reaction of C5Me5Ru(PPh3)2Cl (2)
with PhCtCH.4b An analogous treatment of 2 with
excess HCtCH (1 atm) at room temperature in THF
resulted in the formation of the ruthenacyclopentadiene
complex 1,5 which was conveniently isolated in 54%
yield by treating with 1.2 equiv of CuCl2 (eq 1).6 The
Transition-metal-mediated coupling reactions of al-
kynes are well-known to form a variety of cyclic com-
pounds.1,2 Metallacyclopentadiene complexes have been
commonly considered as important intermediate species
in these reactions.1a,b In contrast, only a few examples
of the linear co-oligomerization reactions of alkynes and
alkenes have been reported.3 The selective linear
coupling reactions of alkynes and functionalized alkenes
would in principle lead to a variety of conjugated olefins.
As a part of an ongoing effort to extend the ruthenium-
mediated alkyne coupling reactions,4 we have begun to
explore the co-oligomerization reactions of alkynes and
alkenes. Herein we report that the newly synthesized
(1)
1H NMR of 1 in C6D6 exhibited an unusually downfield
shifted R-proton at δ 10.20 (J PH ) 6.0 Hz), which was
strongly coupled with both the phosphorus atom and
the Câ proton. The carbon resonances at δ 200.9 and
177.5 (d, J PC ) 27.7 Hz) were assigned to the R- and
â-metallacyclic carbon atoms.7 The metallacyclopenta-
diene structure of 1 was confirmed by X-ray crystal-
lography (Figure 1).8 The molecular structure of 1
showed a distorted-trigonal-bipyramidal geometry with
Cp* and PPh3 groups each occupying apical positions.
(1) (a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.;
Wiley: New York, 1992. (b) Bo¨nnemann, H.; Brijoux, W. In Applied
Homogeneous Catalysis with Organometallic Compounds; Cornils, B.,
Herrmann, W. A., Eds.; VCH: New York, 1996; Vol. 2. (c) Melikyan,
G. G.; Nicholas, K. M. In Modern Acetylene Chemistry; Stang, P. J .,
Diederich, F., Eds.; VCH: New York, 1995. (d) Collman, J . P.; Hegedus,
L. S.; Norton, J . R.; Finke, R. G. Principles and Applications of
Organotransition Metal Chemistry; University Science Books: Mill
Valley, CA, 1987. (e) Grotjahn, D. B. In Comprehensive Organometallic
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.;
Pergamon Press: New York, 1994; Vol. 12. (f) Trost, B. M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 259. (g) Schore, N. E. In Comprehensive
Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: New York, 1990;
Vol. 5. (h) Vollhart, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23,
539.
(2) For recent examples on the metal-mediated intermolecular
alkyne coupling reactions, see: (a) Takeda, A.; Ohno, A.; Kadota, I.;
Gevorgyan, V.; Yamamoto, Y. J . Am. Chem. Soc. 1997, 119, 4547. (b)
Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J . Am. Chem. Soc. 1997,
119, 11313. (c) J ohnson, E. S.; Balaich, G. J .; Fanwick, P. E.; Rothwell,
I. P. J . Am. Chem. Soc. 1997, 119, 11086. (d) O’Connor, J . M.; Hiibner,
K.; Merwin, R.; Gantzel, P. K.; Fong, B. S.; Adams, M.; Rheingold, A.
L. J . Am. Chem. Soc. 1997, 119, 3631. (e) van Belzen, R.; Hoffmann,
H.; Elsevier: C. J . Angew. Chem., Int. Ed. Engl. 1997, 36, 1743.
(3) (a) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J . Am. Chem. Soc.
1974, 96, 5284. (b) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J . Am. Chem.
Soc. 1979, 101, 1123. (c) Mitsudo, T.; Zhang, S.-W.; Nagao, M.;
Watanabe, Y. J . Chem. Soc., Chem. Commun. 1991, 598. (d) Trost, B.
M.; Indolese, A. F.; Mu¨ller, T. J . J .; Treptow, B. J . Am. Chem. Soc.
1995, 117, 615. (e) Bianchini, C.; Caulton, K. G.; J ohnson, T. J .; Meli,
A.; Peruzzini, M.; Vizza, F. Organometallics 1995, 14, 933.
(4) (a) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968. (b) Yi. C.
S.; Liu, N.; Rheingold, A. L.; Liable-Sands, L. M.; Guzei, I. A.
Organometallics 1997, 16, 3729. (c) Yi, C. S.; Liu, N.; Rheingold, A.
L.; Liable-Sands, L. M. Organometallics 1997, 16, 3910.
(5) See the Supporting Information for the characterization data of
complexes 1, 3, 4, and 6.
(6) CuCl2 has been known to form a stable adduct with PPh3. For a
recent example, see: Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J . Am.
Chem. Soc. 1997, 119, 3887 and references therein.
(7) Two metallacyclic carbon resonances were reported at δ 201.3
and 141.3 for the similar ruthenacyclopentadiene complex Cp(Br)(L)-
RuC(Ph)dCHCHdC(Ph) (L ) HN(CH2CH2)2O) in: Albers, M. O.;
deWaal, D. J . A.; Liles, D. C.; Robinson, D. J .; Singleton, E.; Wiege,
M. B. J . Chem. Soc., Chem. Commun. 1986, 1680.
(8) Crystal data for 1‚C6H6: C38H40ClPRu, monoclinic, P21/ c, a )
9.825(4) Å, b ) 22.411(7) Å, c ) 15.412(5) Å, â ) 108.440(19)o, V )
3219(3) Å3, Z ) 4, T ) 295(2) K, Dcalcd ) 1.370 g/cm3, R(F) ) 3.63% for
3354 observed independent reflections (2 e 2θ e 22.5°).
S0276-7333(98)00064-8 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 03/06/1998