OBn
O
OBn
O
(α:β =3.3:1)
BnO
BnO
BnO
BnO
¶ We have recently applied this reagent successfully for the deoxygenation
of a C-disaccharide prepared via the SmI2 route [see ref. 8(b)].
i
∑ It is interesting to note that C-glycoside 8 does not occupy the normally
expected 4C1 chair conformation, as is seen from the coupling constants
(J2,3 = 4.0, J3,4 = 2.9, J4,5 = 5.6 Hz). This has also been observed for other
N-acetyl-a-C-galactosamines (ref. 12) and monosaccharides (ref. 13)
derivatives possessing benzyl protecting groups at the C3, C4 and C6
hydroxy groups. However, the corresponding deprotected or peracetylated
C-glycosides were found to possess the normal chair conformation.
AcHN
AcHN
HO
(4:1)
O
SO2Py
5
TBDMSN
O
6
ii–iv
1 G. F. Springer, Science, 1984, 224, 1198; S. Sell, Hum. Pathol., 1990,
21, 1003; S. H. Itzkowitz, M. Yuan, C. K. Montgomery, J. Kjeldsen,
H. K. Takahashi, W. L. Bigbee and Y. S. Kim, Cancer Res., 1989, 49,
197; S. Hakomori, Curr. Opin. Immunol., 1991, 3, 646.
2 K. L. Carraway and S. R. Hull, Glycobiology, 1991, 1, 131;
A. A. Gooley, A. Pisano and K. L. Williams, Trends Glycosci.
Glycotechnol., 1994, 6, 328.
OBn
O
BnO
BnO
OBn
O
BnO
BnO
AcHN
v–vii
AcHN
3 J.-E. S. Hansen, H. Clausen, C. Nielsen, L. S. Teglbjaerg, L. H. Hansen,
C. M. Nielsen, E. Dabelsteen, L. Mathiesen, S. Hakomori and
J. O. Nielsen, J. Virol., 1990, 64, 2833.
4 For previous work on the use of the Tn antigen as a potential vaccine
against epithelial cancers, see: G. D. McLean and B. M. Longenecker,
Can. J. Oncol., 1994, 4, 249; T. Toyokuni, B. Dean, S. Cai, D. Boisin,
S. Hakamori and A. K. Singhal, J. Am. Chem. Soc., 1994, 116, 395;
T. Toyokuni and A. K. Singhal, Chem. Soc. Rev., 1995, 24, 231;
B. Liebe and H. Kunz, Angew. Chem., Int. Ed. Engl., 1997, 36, 618 and
references cited therein.
5 M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Raton, FL,
1995; D. E. Levy and C. Tang, The Chemistry of C-Glycosides,
Pergamon, Exeter, 1995; G. Casiraghi, F. Zanardi, G. Rassu and
P. Spanu, Chem. Rev., 1995, 95, 1677; for a review on nucleophilic
C-glycosyl donors, see J.-M. Beau and T. Gallagher, Top. Curr. Chem.,
1997, 187, 1.
6 F. Burkhart, M. Hoffmann and H. Kessler, Angew. Chem., Int. Ed. Engl.,
1997, 36, 1191 and references cited therein.
7 For other syntheses of C-glycosyl amino acids not discussed in ref. 6,
see L. Lay, M. Meldal, F. Nicotra, L. Panza and G. Russo, Chem.
Commun., 1997, 1469; S. D. Debenham, J. S. Debenham, M. J. Burk and
E. J. Toone, J. Am. Chem. Soc., 1997, 119, 9897.
8 (a) D. Maze´as, T. Skrydstrup and J.-M. Beau, Angew. Chem., Int. Ed.
Engl., 1995, 34, 909; (b) O. Jarreton, T. Skrydstrup and J.-M. Beau,
Chem. Commun., 1996, 1661; (c) D. Urban, T. Skrydstrup, C. Riche,
A. Chiaroni and J.-M. Beau, Chem. Commun., 1996, 1883; (d)
O. Jarreton, T. Skrydstrup and J.-M. Beau, Tetrahedron Lett., 1997, 36,
303; (e) T. Skrydstrup, O. Jarreton, D. Maze´as, D. Urban and
J.-M. Beau, Chem. Eur. J., 1998, 4, 655; (f) D. Urban, T. Skrydstrup and
J.-M. Beau, J. Org. Chem., in the press.
O
HN
O
BocHN
O
OH
8
7
Scheme 3 Reagents and conditions: i, 2 (1.2 equiv.), SmI2 (2.2 equiv.) THF,
20 °C, 82%; ii, NaH, CS2, MeI, THF, 83%; iii, HSnBu3 (1.5 equiv.), AIBN
(0.05 equiv.), toluene, 110 °C; iv, TBAF (3.5 equiv.), THF, 95% (2 steps);
v, (Boc)2O (1.5 equiv.), Et3N (2.0 equiv.), DMAP (cat.), THF; vi, Cs2CO3
(cat.), MeOH, 83% (2 steps); vii, Jones oxidation, 70%
formation of the methyl xanthate from alcohol 6, followed by
tin hydride promoted radical deoxygenation, afforded 7 after
desilylation in 79% (three steps). A three-step procedure
involving introduction of a Boc group, selective hydrolysis of
the cyclic carbamate11 and oxidation of the primary alcohol to
its corresponding carboxylic acid 8 then completed the
synthesis of the desired C-glycosyl amino acid.∑
In conclusion, we have successfully prepared a hydrolytically
stable Tn antigen mimic via a SmI2-promoted C-glycosylation
protocol. This important amino acid building block is now ready
to be incorporated into small peptide chains in order to test them
as potentially viable synthetic peptide vaccines against various
human epithelial cancers, the results of which will be reported
in due course.
Notes and References
9 N. Lewis, A. McKillop, R. J. K. Taylor and R. J. Watson, Synth.
Commun., 1995, 25, 561.
† E-mail: ts@kemi.aau.dk
‡ Selected data: for 6 dH(250 MHz, CDCl3) (major isomer) 6.18 (d, 1 H, J
8.4, NH), 4.37 (ddd, 1 H, J 9.4, 6.5, 2.9, H5), 4.18 (dd, 1 H, J 11.2, 9.4, H6a),
4.16 (ddd, 1 H, J 8.4, 3.1, 2.2, H2), 3.88 (dd, 1 H, J 3.1, 3.1, H3), 3.76 (dd,
1 H, J 6.5, 3.1, H4), 3.74 (dd, 1 H, J 3.5, 2.2, H1), 3.69 (dd, 1 H, J 11.2, 2.9,
10 D. E. Ward and B. F. Kaller, Tetrahedron Lett., 1993, 34, 407.
11 T. Ishizuka and T. Kunieda, Tetrahedron Lett., 1987, 28, 4185.
12 G. Rubinstenn, J. Esnault, J.-M. Mallet and P. Sinay¨, Tetrahedron:
Asymmetry, 1997, 8, 1327.
H
6b).
13 T. Skrydstrup, D. Maze´as, M. Elmouchir, G. Doisneau, C. Riche,
A. Chiaroni and J.-M. Beau, Chem. Eur. J., 1997, 8, 1342.
§ The protecting group on the carbamate nitrogen also plays a pivotal role
for obtaining high coupling yields of the C-glycoside as exemplified by the
use of the Boc group, where the C-glycosylation yield was reduced by one
half. Another advantage is that it provides easily separable isomers.
Received in Glasgow, UK, 11th February 1998; 8/01196F
956
Chem. Commun., 1998