Page 7 of 7
Journal of Medicinal Chemistry
modulation of glioblastoma with dichloroacetate. Sci. Transl. Med.,
2010, 2, 31ra34.
(PDKs) a viable anticancer target? Int. J. Biol. Sci., 2015, 11,
1390−1400.
1
(3) Samudio, I.; Fiegl, M.; Andreeff, M. Mitochondrial uncoupling
and the Warburg effect: molecular basis for the reprogramming of
cancer cell metabolism. Cancer Res., 2009, 69, 2163–2166.
(4) Dhar, S.; Lippard, S. J. Mitaplatin, a potent fusion of cisplatin and
the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. U S A, 2009,
106, 22199–22204.
(5) Meng, T.; Zhang, D. D.; Xie, Z. Q.; Yu, T.; Wu, S. C.; Wyder, L.;
Regenass, U.; Hilpert, K.; Huang, M.; Geng, M. Y.; Shen, J. K. Disꢀ
covery and optimization of 4,5ꢀdiarylisoxazoles as potent dual inhibiꢀ
tors of pyruvate dehydrogenase kinase and heat shock protein 90. J.
Med. Chem., 2014, 57, 9832–9843.
(6) (a) Vander Heiden, M. G. Targeting cancer metabolism: a theraꢀ
peutic window opens. Nat. Rev. Drug Discov., 2011, 10, 671–684; (b)
Sun, W.; Xie, Z.; Liu, Y.; Zhao, D.; Wu, Z.; Zhang, D.; Lv, H.; Tang,
S.; Jin, N.; Jiang, H.; Tan, M.; Ding, J.; Luo, C.; Li, J.; Huang, M.;
Geng, M. JX06 selectively inhibits pyruvate dehydrogenase kinase
PDK1 by a covalent cysteine modification. Cancer Res., 2015, doi:
10.1158/0008ꢀ5472.CANꢀ15ꢀ1023.
(7) Zhang, S. L.; Hu, X.; Zhang, W.; Yao, H. K.; Tam, K. Y. Develꢀ
opment of pyruvate dehydrogenase kinase inhibitors in medicinal
chemistry with particular emphasis as anticancer agents. Drug Discov.
Today, 2015, 20, 1112–1119.
(8) Tso, S. C.; Qi, X.; Gui, W. J.; Wu, C. Y.; Chuang, J. L.;
WernstedtꢀAsterholm, I.; Morlock, L. K.; Owens, K. R.; Scherer, P.
E.; Williams, N. S.; Tambar, U. K.; Wynn, R. M.; Chuang, D. T.
Structureꢀguided development of specific pyruvate dehydrogenase
kinase inhibitors targeting the ATPꢀbinding pocket. J. Biol. Chem.,
2014, 289, 4432–4443.
(9) (a) McFate, T.; Mohyeldin, A.; Lu, H.; Thakar, J.; Henriques, J.;
Halim, N. D.; Wu, H.; Schell, M. J.; Tsang, T. M.; Teahan, O.; Zhou,
S.; Califano, J. A.; Jeoung, N. H.; Harris, R. A; Verma, A. Pyruvate
dehydrogenase complex activity controls metabolic and malignant
phenotype in cancer cells. J. Biol. Chem., 2008, 283, 22700–22708;
(b) Saha, S.; Ghosh, M.; Dutta, S. K. A potent tumoricidal coꢀdrug
'BetꢀCA'ꢀan ester derivative of betulinic acid and dichloroacetate
selectively and synergistically kills cancer cells. Sci. Rep., 2015, 5,
7762–7771.
(10) Devedjiev, Y.; Steussy, C. N.; Vassylyev, D. G. Crystal structure
of an asymmetric complex of pyruvate dehydrogenase kinase 3 with
lipoyl domain 2 and its biological implications. J. Mol. Biol., 2007,
370, 407–416.
(11) Koukourakis, M. I.; Giatromanolaki, A.; Bougioukas, G.;
Sivridis, E. Lung cancer: a comparative study of metabolism related
protein expression in cancer cells and tumor associated stroma. Canꢀ
cer Biol. Ther., 2007, 6, 1476−1479.
(12) Wigfield, S. M.; Winter, S. C.; Giatromanolaki, A.; Taylor, J.;
Koukourakis, M. L.; Harris, A. L. PDKꢀ1 regulates lactate production
in hypoxia and is associated with poor prognosis in head and neck
squamous cancer. Br. J. Cancer, 2008, 98, 1975−1984.
(13) Fujiwara, S.; Kawano, Y.; Yuki, H.; Okuno, Y.; Nosaka, K.;
Mitsuya, H.; Hata, H. PDK1 inhibition is a novel therapeutic target in
multiple myeloma. Br. J. Cancer, 2013, 108, 170–178.
(14) Hur, H.; Xuan, Y.; Kim, Y. B.; Lee, G.; Shim, W.; Yun, J.; Ham,
I. H.; Han, S. U. Expression of pyruvate dehydrogenase kinaseꢀ1 in
gastric cancer as a potential therapeutic target. Int. J. Oncol., 2013,
42, 44–54.
(15) (a) Kim, J. W.; Tchernyshyov, I.; Semenza, G. L.; Dang, C. V.
HIFꢀ1ꢀmediated expression of pyruvate dehydrogenase kinase: a
metabolic switch required for cellular adaptation to hypoxia. Cell
Metab., 2006, 3, 177−185; (b) Papandreou, I.; Cairns, R. A.; Fontana,
L.; Lim, A. L.; Denko, N. C. HIFꢀ1 mediates adaptation to hypoxia by
actively downregulating mitochondrial oxygen consumption. Cell
Metab., 2006, 3, 187−197; (c) Kim, J. W.; Gao, P.; Liu, Y. C.; Seꢀ
menza, G. L.; Dang, C. V. Hypoxiaꢀinducible factor 1 and dysregulatꢀ
ed cꢀMyc cooperatively induce vascular endothelial growth factor and
metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase
1. Mol. Cell. Biol., 2007, 27, 7381−7393.
(17) Aicher, T. D.; Anderson, R. C.; Bebernitz, G. R.; Coppola, G.
M.; Jewell, C. F.; Knorr, D. C.; Liu, C.; Sperbeck, D. M.; Brand, L.
J.; Strohschein, R. J.; Gao, J.; Vinluan, C. C.; Shetty, S. S.; Dragland,
C.; Kaplan, E. L.; DelGrande, D.; Islam, A.; Liu, X.; Lozito, R. J.;
Maniara, W. M.; Walter, R. E.; Mann, W. R. (R)ꢀ3,3,3ꢀTrifluoroꢀ2ꢀ
hydroxyꢀ2ꢀmethylpropionamides are orally active inhibitors of pyꢀ
ruvate dehydrogenase kinase. J. Med. Chem., 1999, 42, 2741–2746.
(18) Morrell, J. A.; Orme, J.; Butlin, R. J.; Roche, T. E.; Mayers, R.
M.; Kilgour, E. AZD7545 is a selective inhibitor of pyruvate dehyꢀ
drogenase kinase 2. Biochem. Soc. Trans., 2003, 31, 1168–1170.
(19) Gahlot, P.; Kakkar, R. Docking modes of Pfz3 and its analogues
into the lipoamide binding site on PDHK2. Int. Res. J. Pharm., 2011,
1, 33–41.
(20) Moore, J. D.; Staniszewska, A.; Shaw, T., Alessandro, J. D.;
Davis, B.; Surgenor, A.; Baker, L.; Matassova, N.; Murray, J.;
Macias, A.; Brough, P.; Wood, M.; Mahon, P. C. VERꢀ246608, a
novel panꢀisoform ATP competitive inhibitor of pyruvate dehydroꢀ
genase kinase, disrupts Warburg metabolism and induces contextꢀ
dependent cytostasis in cancer cells. Oncotarget, 2014, 5, 12862–
12876.
(21) Hiromasa, Y.; Roche, T. E. Pyruvate dehydrogenase kinase isoꢀ
form 2 activity limited and further inhibited by slowing down the rate
of dissociation of ADP. Biochemistry, 2008, 47, 2298–2311.
(22) Kato, M.; Li, J.; Chuang, J. L.; Chuang, D. T. Distinct Structural
Mechanisms for Inhibition of Pyruvate Dehydrogenase Kinase
Isoforms by AZD7545, Dichloroacetate, and Radicicol. Structure,
2007, 15, 992–1004.
(23) Bonnet, S.; Archer, S. L.; AllalunisꢀTurner, J.; Haromy, A.;
Beaulieu, C.; Thompson, R.; Lee, C. T.; Lopaschuk, G. D.; Puttagunꢀ
ta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C. J.; Andrade,
M. A.; Thebaud, B.; Michelakis, E. D. A mitochondriaꢀK+ channel
axis is suppressed in cancer and its normalization promotes apoptosis
and inhibits cancer growth. Cancer Cell, 2007, 11, 37–51.
(24) Aicher, T. D.; Anderson, R. C.; Gao, J.; Shetty, S. S.; Coppola,
G. M.; Stanton, J. L.; Knorr, D. C.; Sperbeck, D. M.; Brand, L. J.;
Vinluan, C. C.; Kaplan, E. L.; Dragland, C. J.; Tomaselli, H. C.; Isꢀ
lam, A.; Lozito, R. J.; Liu, X.; Maniara, W. M.; Fillers, W. S.; Delꢀ
Grande, D.; Walter, R. E.; Mann, W. R. Secondary amides of (R)ꢀ
3,3,3ꢀtrifluoroꢀ2ꢀhydroxyꢀ2ꢀmethylpropionic acid as inhibitors of
pyruvate dehydrogenase kinase. J. Med. Chem., 2000, 43, 236–249.
(25) Yang, Y. C.; Shang, P. H.; Cheng, C. M.; Wang, D. C.; Yang, P.;
Zhang, F.; Li, T. W.; Lu, A. J.; Zhao, Y. F. Novel Nꢀphenyl dichloroꢀ
acetamide derivatives as anticancer reagents: design, synthesis and
biological evaluation. Eur. J. Med. Chem., 2010, 45, 4300–4306.
(26) Li, T. W.; Yang, Y. C.; Cheng, C. M.; Tiwari, A. K.; Sodani, K.;
Zhao, Y. F.; Abraham, I.; Chen, Z. S. Design, synthesis and biological
evaluation of Nꢀarylphenylꢀ2,2ꢀdichloroacetamide analogues as antiꢀ
cancer agents. Bioorg. Med. Chem. Lett., 2012, 22, 7268–7271.
(27) Pathak, R. K.; Marrache, S.; Harn, D. A.; Dhar, S. MitoꢀDCA: a
mitochondria targeted molecular scaffold for efficacious delivery of
metabolic modulator dichloroacetate. ACS Chem. Biol., 2014, 9,
1178–1187.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Table of content
(16) Zhang, W.; Zhang, S. L.; Hu, X.; Tam, K. Y. Targeting tumor
metabolism for cancer treatment: is pyruvate dehydrogenase kinases
7
ACS Paragon Plus Environment