We are currently investigating the extent which stacking
interactions control self-assembly in related substances.
We thank the companies Novartis Ag, Biosynth AG and Shell
Oil for chemical donations, the Treubel Fond for a stipend
(F. H.) and Professors E. C. Constable and K. Wieghardt for
encouraging this work.
(a)
Notes and References
† E-mail: heirtzler@ubaclu.unibas.ch
‡ Correct spectral and analytical data (C, H, N) were obtained for 2 and 5.
1
Spectral data for [Cu2]2[BF4]2: H NMR (400 MHz, CD3CN, 240 °C), d
(b)
8.72 (dd, J 1.0, 8.2 Hz, 1 H, H-3A/5A), 8.63 (d, J 2.7 Hz, 1 H, H-5/6), 8.57 (t,
J 7.8 Hz, 1 H, H-4A), 8.56 (d, J 8.2 Hz, 1 H, H-3B), 8.31 (dd, J 0.7, 7.6 Hz,
1 H,H-5A/3A), 8.14–8.19 (m, 2 H, H-4B, H-5B/6B), 8.09 (d, J 2.4 Hz, 1 H,
H-6/5), 7.53–7.58 (m, 3 H, H-6B/5B, H-4Ú,), 7.48 (dt, J 1.2, 4.8 Hz, 1 H,
H-6Ú), 7.21 (ddd, J 1.0, 5.3, 8.2 Hz, 1 H, H-5Ú), 7.15 (d, J 8.2 Hz, 1 H,
H-3Ú); 13C NMR (100 MHz, CD3CN 240 °C), d 149.35 (2C), 146.46,
141.96 (2C), 139.63, 137.79, 129.29, 127.68 (2C), 125.74, 124.18, 123.42.
Anal. Calc. for C38H26B2Cu2F8N10: C, 48.8; H, 2.97; N, 15.3. Found: C,
49.4; H, 2.84; N, 15.2%.
§ Crystallographic data for [Cu2]2[BF4]2, C38H26B2Cu2F8N10, Mr
=
923.39, dark red blocks, 0,43 3 0.28 3 0.25 mm, monoclinic, space group
C2/c, a = 13.271(2), b = 11.368(2), c = 24.200(4) Å, b = 95.72(2)°, U =
3632.7(10) Å3, Z = 4, Dc = 1.688 Mg m23, m = 1.259 mm21, F(000) =
1856, graphite monochromated radiation with l(Mo-Ka) = 0.710 73 Å, T
= 100(2) K, 17 678 reflections measured (1.69 < q < 30.00°) of which
5262 were independent (Rint = 0.0241), collected on a Siemens SMART
diffractometer with CCD detector taking frames at 0.3° in w. Data corrected
for Lorentz and polarization effects, absorption correction using SA-
DABS11 (min., max. transmission factors: 0,572, 0.832) and structure
solution and refinement on F2 using Siemens ShelXTL-V5. All non-
hydrogen atoms refined anisotropically, hydrogen atoms placed at calcu-
lated positions and refined isotropically. R1 = 0.0426, wR2 = 0.1041,
9.0
8.5
8.0
d
7.5
7.0
Fig. 1 1H NMR spectra of [Cu2]2[BF4]2 at (a) 21 and (b) 240 °C
1H NMR spectroscopy can distinguish equilibrating mixtures of
diastereomeric metallophanes2g it is evident that [Cu2]2[BF4]2
undergoes no such phenomenon.
In order to determine the stereochemistry of the dinuclear
complex, its crystal structure was determined.§ Complex
[Cu2]2[BF4]2 crystallizes in a centrosymmetric space group.
Consequently, the dication occurs as a racemic mixture of L,L-
and D,D-configured enantiomers, whereby the equivalent Cu2
fragments are inter-related by the C2 axis which runs parallel to
the pyridyl pyrazine surfaces and between the bipyridyl flanks.¶
The P-helical enantiomer is displayed in Fig. 2. The pyridyl
pyrazine copper(i) ‘decks’ of the metallophane are arranged in
a head-to-head fashion. Interdeck non-bonding distances be-
tween closest pairs of atoms are 3.47–3.57 Å for the pyrazine
rings and 3.42–3.62 Å for the monosubstituted pyridine rings;
the pairs of pyrazine and pyridine rings are parallel to within
2.10 and 2.03°, respectively. The bipyridyl and pyridylpyrazine
binding domains are twisted by 72.3° with respect to one
another, giving the observed rectangular molecular geometry.
The intermetallic distance is 5.08 Å. All metal–ligand bonding
parameters are within expected values.
goodness-of-fit: 1.049 for 4353 reflections with I
> 2s(I) and 271
parameters. Residual positive, negative electron density: +1.34, 20.49 Å23
.
CCDC 182/883.
¶ The hypothetical meso-dicopper(i) metallophane is characterized by a
‘head-to-tail’ orientation of the pyridylpyrazine decks and an inversion axis
(S2) in roughly the same location as for the chiral form.
1 (a) J.-C. Chambron, C. Dietrich-Buchecker and J.-P. Sauvage, Top.
Curr. Chem., 1993, 165, 131; (b) P. J. Stang and B. Olenyuk, Acc. Chem.
Res., 1997, 30, 502; (c) C. Piguet, G. Bernardinelli and G. Hopfgartner,
Chem. Rev., 1997, 97, 2005; (d) J. M. Lehn, Supramolecular Chemistry,
Concepts and Perspectives, VCH, New York, 1995; (e) E. C. Constable,
Tetrahedron, 1992, 48, 10 013.
2 (a) F. Heirtzler and T. Weyhermu¨ller, J. Chem. Soc., Dalton Trans.,
1997, 3653; (b) M. J. Hannon, C. L. Painting and W. Errington, Chem.
Commun., 1997, 307; (c) A. K. Burrell, D. L. Officer, D. C. W. Reid and
K. Y. Wild, Angew. Chem., Int. Ed. Engl., 1998, 37, 114; (d) A. Bilyk,
M. M. Harding, P. Turner and T. W. Hambley, J. Chem. Soc., Dalton
Trans., 1995, 2549; (e) M. H. Houghton, A. Bilyk, M. M. Harding, P.
Turner and T. W. Hambley, J. Chem. Soc., Dalton Trans., 1997, 2725;
1998, 723; (f) A. Bilyk, M. Harding, P. Turner and T. W. Hambley,
J. Chem. Soc., Dalton Trans., 1994, 2783. (g) A. Bilyk and M. M.
Harding, J. Chem. Soc., Dalton Trans., 1994, 77.
Ligand 2 diastereoselectively self-assembles to form a chiral
metallophane, which is also stable in solution. That this
phenomenon is influenced by stacking of metal-binding pyridyl
pyrazine fragments is suggested by molecular models of the
L,L/D,D-and meso-L,D-disastereomers, which indicate more
efficient overlap for the former compound.
3 C. A. Hunter, Chem. Soc. Rev., 1994, 23, 101.
4 H. Hope, Acta Crystallogr., Sect. B, 1972, 28, 1733.
5 See, however, M. Albrecht and C. Riether, Chem. Ber., 1996, 129, 829
and references therein.
6 C. O. Dietrich-Buchecker, J.-F. Nierengarten, J.-P. Sauvage, N.
Armaroli, V. Balzani and L. De Cola, J. Am. Chem. Soc., 1993, 115,
11 237.
C(6′″)
N(1′″)
C(2)
N(1)
C(2′)
7 F. R. Heirtzler, M. Neuburger, M. Zehnder and E. C. Constable, Liebigs
Ann./Recueil, 1997, 297.
N(1′)
C(2″)
8 (a) R.-D. Schnebeck, L. Randaccio, E. Zangrando and B. Lippert,
Angew. Chem., Int. Ed. Engl., 1998, 37, 119; (b) L. Carlucci, G. Ciani,
D. M. Proserpio and A. Sironi, J. Am. Chem. Soc., 1995, 117, 4562.
9 (a) T. Otieno, S. J. Rettig, R. C. Thompson and J. Trotter, Inorg. Chem.,
1993, 32, 1607; (b) R. V. Stone, J. P. Hupp, C. L. Stern and T. E.
Albrecht-Schmitt, Inorg. Chem., 1996, 35, 4096.
Cu
N(1″)
10 E. C. Constable, M. J. Hannon, A. J. Edwards and P. R. Raithby,
J. Chem. Soc., Dalton Trans., 1994, 2669.
11 G. Sheldrick, University of Go¨ttingen, 1994.
Fig. 2 Crystal structure of the [Cu2]2-dication. Selected bond angles (°) and
lengths (Å): N(4)–Cu–N(1B) 138.46(7), N(1B)–Cu–N(1A) 82.17(7), N(1B)–
Cu–N(1BA) 114.39, N(4)–Cu–N(1A) 120.80(7), N(4)–Cu–N(1BA) 80.91(7),
N(1A)–Cu–N(1BA) 126.72(7); Cu–N(4) 1.991(2), Cu–N(1A) 2.033(2), Cu–
N(1B) 2.005(2), Cu–N(1BA) 2.038(2).
Received in Basel, Switzerland, 9th April 1998; 8/02709I
1476
Chem. Commun., 1998