T. Naicker et al. / Tetrahedron: Asymmetry 21 (2010) 2859–2867
2867
13. Tarver, J. E.; Pfizenmayer, A. J.; Joullié, M. M. J. Org. Chem. 2001, 66, 7575–7587.
14. Zarranz De Ysern, M. E.; Ordoñez, L. A. Prog. Neuro-Psychopharmacol. 1981, 5,
343–355.
15. Arvidsson, P. I.; Govender, T.; Kruger, H. G.; Maguire, G. E. M.; Naicker, T. S. Afr.
J. Chem. 2009, 62, 60–66.
16. Boyle, G. A.; Govender, T.; Kruger, H. G.; Maguire, G. E. M. Tetrahedron:
Asymmetry 2004, 15, 3775–3781.
17. Boyle, G. A.; Govender, T.; Kruger, H. G.; Maguire, G. E. M. Tetrahedron:
Asymmetry 2004, 15, 2661–2666.
the standard Bruker library with 8 and 512; 8 and 256; and 16 and
512 scans and number of complex points in f1 dimension, respec-
tively. 2D homonuclear. ROESY experiments were recorded accord-
ing to Thiele et al., with 40 scans and 512 complex points.45
A
mixing time of 250 ms was applied to achieve proper transfer
and a relaxation delay of 2 s was applied, when distances where
extracted. ROE distances were used as a range from 2.5 to 5 Å for
calculations to restrain.
18. Basavaiah, D.; Das, U.; Roy, S. J. Chem. Sci. 2009, 121, 1003–1010.
19. Blanc, C.; Hannedouche, J.; Agbossou-Niedercorn, F. Tetrahedron Lett. 2003, 44,
6469–6473.
4.13. Computational details
20. Hari, Y.; Sakuma, M.; Miyakawa, A.; Hatano, K.; Aoyama, T. Heteroycles 2008,
305–311.
21. Stingl, K.; Martens, J.; Wallbaum, S. Tetrahedron: Asymmetry 1992, 3, 223–226.
22. Chakka, S. K.; Andersson, P. G.; Maguire, G. E. M.; Kruger, H. G.; Govender, T.
Eur. J. Org. Chem. 2010, 972–980.
23. Peters, B. K.; Chakka, S. K.; Naicker, T.; Maguire, G. E. M.; Kruger, H. G.;
Andersson, P. G.; Govender, T. Tetrahedron: Asymmetry 2010, 21, 679–687.
24. Kawthekar, R. B.; Chakka, S. K.; Francis, V.; Andersson, P. G.; Kruger, H. G.;
Maguire, G. E. M.; Govender, T. Tetrahedron: Asymmetry 2010, 21, 846–852.
25. Chakka, S. K.; Peters, B. K.; Maguire, G. E. M.; Kruger, H. G.; Andersson, P. G.;
Govender, T. Tetrahedron: Asymmetry 2010.
Complexes A–D and transitions states were optimized in the
gas phase using GAUSSIAN 0946 at the the density functional theory
(DFT) level employing the B3LYP (Becke’s three-parameter non-lo-
cal exchange function47–49) with the correlation functional of Lee,
Yang and Par50 in conjunction with the 6-31+G(d) basis set. set.
Diffuse functions are typically used for a more accurate description
where lone pair electrons are involved, while polarization func-
tions remove some limitations of the basis set by expansion of
the virtual space. Solvation effects were not considered in order
to simplify the model. Geometry optimizations were performed
without restrictions in order to locate extrema presented herein.
Frequency calculations were performed for all structures. Transi-
tions states were characterized by a single imaginary frequency,
which corresponds to the movement of atoms consistent with
the expected reaction. To ensure that the lowest energy transition
state for the first step (bond formation between atoms 1 and 2 in
Figure 6) was found, a relaxed scan (using a semi-empirical calcu-
lation with Parameterized Model number 6)51 was performed with
the atom distance for atoms 1 and 2 kept fixed at about 1.89 Å. The
scan entailed a 360° rotation of the cyclopentadiene molecules in
15° steps. The structure corresponding to the lowest energy struc-
ture on the energy profile was used for a normal unconstrained
transition state for the DFT calculation.
26. List, B. Synth. Lett. 2001, 1675–1686.
27. Grunewald, G. L.; Sall, D. J.; Monn, J. A. J. Med. Chem. 1988, 31, 824–830.
28. Aubry, S.; Pellet-Rostaing, S.; Faure, R.; Lemaire, M. J. Heterocycl. Chem. 2006,
43, 139–148.
29. Cai, T. B.; Zou, A.; Thomas, J. B.; Brieaddy, L.; Navarro, H. A.; Carrol, F. I. J. Med.
Chem. 2008, 1849–1860.
30. Tang, Y. F.; Liu, Z. Z.; Chen, S. Z. Tetrahedron Lett. 2003, 44, 7091–7094.
31. Palomo, C.; Mielgo, A. Angew. Chem., Int. Ed. 2006, 45, 7876–7880.
32. Aggarwal, V. K.; Sandrinelli, F.; Charmant, J. P. H. Tetrahedron: Asymmetry 2002,
13, 87–93.
33. Hartikka, A.; Hojabri, L.; Bose, P. P.; Arvidsson, P. I. Tetrahedron: Asymmetry
2009, 20, 1871–1876.
34. Lemay, M.; Ogilvie, W. W. Org. Lett. 2005, 7, 4141–4144.
35. Groselj, U.; Schweizer, W. B.; Ebert, M.-O.; Seebach, D. Helv. Chim. Acta 2009,
92, 1–13.
36. Groselj, U.; Seebach, D.; Badine, D. M.; Schweizer, W. B.; Beck, A. K.;
Krossing, I.; Klose, P.; Hayashi, Y.; Uchimaru, T. Helv. Chim. Acta 2009, 92,
1225–1259.
37. Seebach, D.; Gilmour, R.; Groselj, U.; Deniau, G.; Sparr, C.; Ebert, M.-O.; Beck, A.
K.; McCusker, L. B.; Sisak, D.; Uchimaru, T. Helv. Chim. Acta 2010, 93, 603–634.
38. Seebach, D.; Groselj, U.; Badine, D. M.; Schweizer, W. B.; Beck, A. K. Helv. Chim.
Acta 2008, 91, 1999–2034.
39. Naicker, T.; Govender, T.; Kruger, H. G.; Maguire, G. E. M. Acta Crystallogr., Sect.
E: Struct. Rep. 2010, 66, 0638.
40. Naicker, T.; McKay, M.; Govender, T.; Kruger, H. G.; Maguire, G. E. M. Acta
Crystallogr., Sect. E: Struct. Rep. 2009, 65, o3278.
41. Gordillo, R.; Houk, K. N. J. Am. Chem. Soc. 2006, 128, 3543–3553.
42. Kano, T.; Tanaka, Y.; Maruoka, K. Org. Lett. 2006, 8, 2687–2689.
43. Gotoh, H.; Hayashi, Y. Org. Lett. 2007, 9, 2859–2862.
44. He, H.; Pei, B. J.; Chou, H.; Tian, T.; Cha, W. H.; Lee, A. W. M. Org. Lett. 2008, 10,
2421–2424.
Acknowledgements
The authors wish to thank the National Research Foundation
(South Africa, GUN 65387) The SA/Swedish Research Links Pro-
gramme grant and Aspen Pharmacare, South Africa.
References
45. Thiele, C. M.; Petzold, K.; Schleucher, J. Chem. Eur. J. 2009, 15, 585–588.
46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,
Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. GAUSSIAN 09 Revision A. 1;
Gaussian, Inc.: Wallingford CT, 2009.
1. Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley-VCH Verlag Gmb & Co
KGaA: Weinheim, 2007.
2. Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638–4660.
3. Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008,
47, 6138–6171.
4. Erkkila, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416–5470.
5. Lelais, G.; MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79–87.
6. List, B. Chem. Commun. 2006, 819–824.
7. Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–
5569.
8. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122,
4243–4244.
9. Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.;
Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296–18304.
10. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395–2396.
11. Liu, Z.-Z.; Wang, Y.; Tang, Y.-F.; Chen, S.-Z.; Chen, X.-G.; Li, H.-Y. Bioorg. Med.
Chem. Lett. 2006, 16, 1282–1285.
47. Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177.
48. Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160.
49. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
50. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
51. Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173–1213.
12. Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–1730.