Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC05851A
COMMUNICATION
Journal Name
resulting the torsion angle between two Cl-Pd-Cl planes is 129.6o, Shanghai International Cooperation Program (14230710600),
due to C-H···π interactions (the shortest one is 2.495 Å). This data and Department of Chemistry, Fudan University is gratefully
suggests the reactive dimeric complex is liable to dissociate, which acknowledged.
makes the electrophile trapping more easy (blue arrows in Fig. 1b).
With these two crucial information in hand, we propose that the
Notes and references
congested dimeric Pd(II) intermediate may be released after the
alkylation, which accelerate the conversion process leading to the
sulfone formation in good yields.2b
1
(a) Handbook of Organopalladium Chemistry for Organic
Synthesis (Ed.: E.-i. Negishi), Wiley: New York, 2002; (b) A. de
Meijere, F. Diederich in Metal-Catalyzed Cross-Coupling
Reactions, Vol. 1, 2nd. ed. (Ed.: N. Miyaura), Wiley-VCH,
Weinheim, 2004, pp. 41-123; (c) Metal-Catalyzed Cross-
Coupling Reactions and More (Eds.: A. de Meijere, S.Brase,
M. Oestreich), Wiley: New York, 2014.
2
3
(a) N. Miyaura, K. Yamada and A. Suzuki, Tetrahedron Lett.,
1979, 20, 3437-3440; (b) N. Miyaura and A. Suzuki, Chem.
Rev., 1995, 95, 2457-2483.
(a) X.-F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev.,
2011, 40, 4986-5009; (b) X.-F. Wu, H. Neumann and M.
Beller, Chem. Rev., 2013, 113, 1-35; (c) S. D. Friis, A. T.
Lindhardt and T. Skrydstrup, Acc. Chem. Res., 2016, 49,
594−605.
4
(a) F. E. Hahn, Angew. Chem., Int. Ed., 2006, 45, 1348-1352;
(b) S. Würtz and F. Glorius, Acc. Chem. Res., 2008, 41, 1523-
1533; (c) F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed.,
2008, 47, 3122-3172; (d) M. N. Hopkinson, C. Richter, M.
Schedler and F. Glorius, Nature, 2014, 510, 485-496.
(a) N-Heterocyclic Carbenes in Transition Metal Catalysis;
Top. Organomet. Chem. (Ed.: Glorius, F.) Springer-Verlag,
Berlin/Heidelberg, 2007, pp. 28. (b) N-Heterocyclic Carbenes
(Ed.Nolan, S. P.) Wiley: Weinheim, Germany, 2014.
(a) The Chemistry of Sulfones and Sulfoxides (Eds.: S. Patai, Z.
Rappoport, C. J. M. Stirling) Wiley: New York, 1988; (b)
Sulfones in Organic Synthesis (Ed.: N. S. Simpkins) Pergamon
Press: Oxford, 1993.
(a) W. Fang, H. Zhu, Q. Deng, S. Liu, X. Liu, Y. Shen and T. Tu,
Synthesis, 2014, 46, 1689-1708; (b) X.-F. Wu, RSC Adv., 2016,
6, 83831-83837; (c) J.-B. Peng, X. Qi and X.-F. Wu,
ChemSusChem, 2016, 9, 2279-2283; (d) X.-F. Wu, Chem. Eur.
J., 2015, 21, 12252-12265; (e) H.-Y. Zhao, F. Zhang, Z. Luo and
X. Zhang, Angew. Chem., Int. Ed., 2016, 55, 10401-10405.
G. J. Kubas, Acc. Chem. Res., 1994, 27, 183-190.
Fig. 1. a) Top view and b) side view of X-ray crystal structure of complex 30 (Ellipsoids
set at 50% probability, and the hydrogen atoms are omitted for clarity); c) the plausible
mechanism for the Pd(II)-catalyzed alkylsulfonylation of boronic acids.
5
6
7
Based on these results, a new plausible transformation
route is proposed (Fig. 1c). Initially, transmetalation takes
place between Pd(II) species and boronic acid,2b and follows by
the insertion of SO2 into the Pd-C bond16 to generate a dimeric
Pd(II) intermediate complex 30. Due to the bulky and
electronic rich properties of ligand, the long and accessible Pd-
S bond is easily attacked by C-electrophiles in the presence of
TBAB. Along with the corresponding sulfone product formation,
the ligated Pd(II) catalyst is regenerated. Combining the result
of Eq. 2 and the previous study,10 there may be two plausible
roles of TBAB in the transformation: 1) increasing the solubility
of the inorganic salt in dioxane and 2) accelerating the
transformation of dimeric Pd(II) intermediate like 30 into
sulfinate leading to the corresponding sulfone formation.
In conclusion, robust Pd(NHC) complexes have been
demonstrated for the first time as highly efficient catalysts in
the direct alkylsulfonylation of readily available (hetero)aryl- or
alkenyl-boronic acids with potassium metabisulfite and diverse
8
9
(a) P. Bisseret and N. Blanchard, Org. Biomol. Chem., 2013,
11, 5393–5398; (b) G. Liu, C. Fan and J. Wu, Org. Biomol.
Chem., 2015, 13, 1592–1599.
10 A. Shavnya, K. D. Hesp, V. Mascitti and A. C. Smith, Angew.
Chem., Int. Ed., 2015, 54, 13571-13575.
11 (a) T. Tu, W. Fang and J. Jiang, Chem. Commun., 2011, 12358-
12360; (b) T. Tu, Z. Sun, W. Fang, M. Xu and Y. Zhou, Org.
Lett., 2012, 14, 4250-4253.
12 (a) W. Fang, Q. Deng, M. Xu and T. Tu, Org. Lett., 2013, 15,
3678-3681; (b) S. Liu, Q. Deng, W. Fang, J.-F. Gong, M.-P.
Song, M. Xu and T. Tu, Org. Chem. Front., 2014, 1, 1261-
1265.
13 M. S. Viciu, O. Navarro, R. F. Germaneau, R. A. Kelly, W.
Sommer, N. Marion, E. D. Stevens, L. Cavallo and S. P. Nolan,
Organometallics, 2004, 23, 1629-1635.
14 (a) M.-T. Chen, D. A. Vicic, M. L. Turner and O. Navarro,
Organometallics, 2011, 30, 5052-5056; (b) F. Izquierdo, S.
Manzini and S. P. Nolan, Chem. Commun., 2014, 50, 14926-
14937.
15 M. S. Viciu, R. F. Germaneau, O. Navarro-Fernandez, E. D.
Stevens and S. P. Nolan, Organometallics, 2002, 21, 5470-
5472.
alkylhalides.
Remarkably,
acenaphthoimidazolylidene
palladium complexes exhibited the highest activity, and up to
quantitative yields could be obtained even at low catalyst
loading. Although it is difficult to isolate the intermediate
derived from the Pd(NHC) complexes, the crystal structure of a
dimeric Pd(II) analogue helps us to propose plausible
mechanism for this challenging transformation, in which
routine sulfinate intermediates may not be involved. This first
Pd(NHC)-catalyzed redox-neutral protocol presented a direct,
general, and efficient approach to access diverse (hetero)aryl-
alkyl and alkenyl-alkyl sulfones.
Financial support from the National Key R&D Program of
China (2016YFA0202902), National Natural Science Foundation
of China (No. 21572036, 81670810 and 91127041), the
16 D. P. Gates, P. S. White and M. Brookhart, Chem. Commun.,
2000, 47-48.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins