Stereoselective Recognition of Tripeptides
NH of the amido group and CdO of the vicinal amido
group form an ideal hydrogen donor/acceptor pair suit-
able for bonding with R-amino acid derivatives.15,16 This
chiral receptor is expected to exert different complexation
strengths with respect to D- and L-amino acid derivatives.
Previous HPLC studies15,16d have revealed that chiral
columns using A2B2 derivatives as a stationary phase are
applicable to the separation of derivatized isomers of
R-amino acids and tripeptides. In this regard, the cage
compound with an A4B6 motif also serves as a receptor
for dipeptide and tripeptide derivatives.11, 17
As for the signal transduction, the molecular receptors
of A2B2 and A4B4 scaffolds are elaborated to detect peptide
derivatives by attaching suitable fluorophore/quencher
pairs, e.g., dansyl and dabcyl, via the fluorescence
resonance energy transfer (FRET) mechanism.18 In the
absence of guest molecule, the free receptor shows rather
weak fluorescence due to the efficient FRET, followed by
the dominant nonradiative deactivation pathways. Upon
complexation with the target peptide, an enhanced
fluorescence is observed as the fluorophore and quencher
are pushed apart.
On the basis of the protocol of two-armed receptors
devised by Still’s group,11,16,17 we demonstrate herein a
novel molecule sensor 1 that is used to detect tripeptides
with a high sequence- and stereoselectivity. Compound
1 is designed to incorporate two A2B2 motifs as the
recognition units16a,d and a tris(bipyridine) ruthenium-
(II) complex as the signal transduction unit (Figure 2).
The two macrocyclic A2B2 units are linked to a bipyridine
moiety via two amide bonds. Thus, the multiple-amide
unit provides a desirable semirigid structure and suf-
ficient hydrogen bonding sites for peptide recognition.
The appropriate disposition of two A2B2 motifs in mol-
ecule 1 may also enhance the binding with the target
peptides in a cooperative manner.16 The Ru(II) center is
sensitive to the binding event so that the changes of
luminescence properties and redox potential can be
readily monitored and correlated to the binding strength.19
FIGURE 1. A2B2 motif formed by two units of isophthalic acid
(A) and two units of vicinal diamine (B) in recognition of
R-amino acid derivatives via double hydrogen bondings.
consisting of 2,6-diaminopyridine, phenylalanine, succinic
acid, (4-aminomethyl)phenol, and (4′-bromomethylbiphen-
yl)acetic acid.10 This receptor displays a selective binding
to dipeptide N-Cbz-(â-Ala)-Ala. A similar macrocyclic
hexaamide receptor is derived from a core structure of
1,3,5-trimercaptobenzene to form a confined deep-basket
shape that well accommodates the guest molecule of
tripeptide cPr-Ala-Pro-Ala-NHC12H25.11 A podant iono-
phore12 having a three-dimensional framework also
shows a sequence-selective recognition of L-Arg-L-Phe-D-
Asp. Cyclodextrins13 and Kemp’s acid amide derivatives14
are also suitable motifs for peptide recognition. The
receptor molecules constructed by incorporation of such
motifs exhibit high affinity toward linear and cyclic
peptides. A multiloop receptor has been built by extension
of four hydrophilic cyclic peptide loops, Gly-Asp-Gly-Asp,
on a hydrophobic calix[4]arene core.7 This molecular
receptor thus provides multiple electrostatic and hydro-
gen bonding interactions to bind with the surface peptide
of cytochrome c that contains abundant lysine residues.7
In view of sensing peptides in an enantioselective
fashion, of special interest are the molecular receptors
with chiral recognition sites, e.g., the A2B2 motif of an
octadecacyclotetramide structure (Figure 1). The A2B2
motif is readily constructed by two units of isophthalic
acid and two units of (1R,2R)-1,2-diphenylethane-
diamine15 [or (1R,2R)-1,2-cyclohexanediamine],16 in which
Results and Discussion
Synthesis. Molecular sensor 1 was constructed by five
building blocks: isophthalic acid bis-chloride (2), (R,R)-
cyclohexane-1,2-diamine (3), 5-(azidomethyl)isophthalic
acid (4), 2,2′-bipyridine-4,4′-dicarboxylic acid (5), and cis-
(bpy)2RuCl2 (6). When diamine 3 was treated with Boc2O,
a mixture of mono-Boc and di-Boc derivatives were
obtained. To avoid this complication, an indirect method
was applied to prepare the mono-Boc derivative 7 (Scheme
1).20 Thus, diamine 3 was first converted to the N,N′-bis-
Cbz derivative, which was then reacted selectively with
(7) (a) Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100, 2479.
(b) Hamuro, Y.; Calama, M. C.; Park, H. S.; Hamilton, A. D. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2680.
(8) (a) Wennemers, H.; Conza, M.; Nold, M.; Krattiger, P. Chem.
Eur. J. 2001, 7, 3342. (b) Conza, M.; Wennermers, H. J. Org. Chem.
2002, 67, 2696.
(9) LaBrenz, S. R.; Kelly, J. W. J. Am. Chem. Soc. 1995, 117, 1655.
(10) Dowden, J.; Edwards, P. D.; Flack, S. S.; Kilburn, J. D. Chem.
Eur. J. 1999, 5, 79.
(11) (a) Borchardt, A.; Still, W. C. J. Am. Chem. Soc. 1994, 116, 373.
(b) Borchardt, A.; Still, W. C. J. Am. Chem. Soc. 1994, 116, 7467.
(12) Burger, M. T.; Still, W. C. J. Org. Chem. 1997, 62, 4785.
(13) (a) Breslow, R.; Yang, Z.-W.; Ching, R.; Trojandt, G.; Odobel,
F. J. Am. Chem. Soc. 1998, 120, 3536. (b) Breslow, R.; Zhang, B. J.
Am. Chem. Soc. 1992, 114, 5882. (c) Breslow, R.; Greenspoon, N.; Guo,
T.; Zarzycki, R. J. Am. Chem. Soc. 1989, 111, 8296. (d) Zhang, B.;
Breslow, R. J. Am. Chem. Soc. 1993, 115, 9353. (e) Maletic, M.;
Wennemers, H.; McDonald, D. Q.; Breslow, R.; Still, W. C. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1490.
(17) (a) Yoon, S. S.; Still, W. C. J. Am. Chem. Soc. 1993, 115, 823.
(b) Yoon, S. S.; Still, W. C. Tetrahedron 1995, 51, 567.
(18) (a) Chen, C.-T.; Wagner, H.; Still, W. C. Science 1998, 279, 851.
(b) Rothman, J. H.; Still, W. C. Bioorg. Med. Chem. Lett. 1999, 9, 509.
(19) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.;
Coudret, C.; Baltani, V.; Barigelletti, F.; De Cola, L.; Famigni, L. Chem.
Rev. 1994, 94, 993. (a) Szemes, F.; Hesek, D.; Chen, Z.; Dent, S. W.;
Drew, M. G. B.; Goulden, A. J.; Graydon, A. R.; Grieve, A.; Mortimer,
R. J.; Wear, T.; Weightman, J. S.; Beer, P. D. Inorg. Chem. 1996, 35,
5868. (b) Prasanna de Silva, A.; Nimal Guaratne, H. Q.; Gunnlaugsson,
T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem.
Rev. 1997, 97, 1515. (c) Keefe, M. H.; Benkstein, K. D.; Hupp, J. T.
Coord. Chem. Rev. 2000, 205, 201.
(14) Jeong, K.-S.; Muehldorf, A. V.; Rebek, J., Jr. J. Am. Chem. Soc.
1990, 112, 6144.
(15) Gasparrini, F.; Misiti, D.; Pierini, M.; Villani, C. Org. Lett. 2002,
4, 3993.
(16) (a) Wennemers, H.; Yoon, S. S.; Still, W. C. J. Org. Chem. 1995,
60, 1108. (b) Still, W. C. Acc. Chem. Res. 1996, 29, 155. (b) Hu, K.;
Bradshaw, J. S.; Dalley, N. K.; Krakowiak, K. E.; Wu, N.; Lee, M. L.
J. Heterocycl. Chem. 1999, 36, 381. (d) Gasparrini, F.; Misiti, D.; Still,
W. C.; Villani, C.; Wennemers, H. J. Org. Chem. 1997, 62, 8221.
(20) Kim, Y. Y.; Lee, S. J.; Ahn, K. H. J. Org. Chem. 2000, 65, 7807.
J. Org. Chem, Vol. 70, No. 6, 2005 2027