Iso-4′-thionucleosides
J . Org. Chem., Vol. 63, No. 20, 1998 6897
40 h at room temperature. After the solvent was removed
under reduced pressure, the residue was dissolved in MeOH
(10 mL) and concentrated NH4OH (20 mL). The mixture was
heated at 80 °C in a sealed tube for 5 h. After cooling, the
solvent was removed under reduced pressure and the residue
was applied to a column of adsorption resin (8 mL, Sepabeads
SP206, Mitsubishi Chemical Corp., Tokyo, J apan). The eluate
of 10% aqueous EtOH was collected and concentrated to give
â-19 (91 mg, 80%) as crystals: mp >250 °C (dec, crystallized
(2S)-1,4-An h yd r o-2-(N3-ben zoyl-5-(E)-(br om ovin yl)u r a -
cil-1-yl)-3-O-ben zyl-5-O-(ter t-bu tyldiph en ylsilyl)-2-d eoxy-
4-t h io-D-a r a b it ol (20c) a n d (2S)-1,4-An h yd r o-2-O-(N3-
b e n zoyl-5-(E )-(b r om ovin yl)p yr im id in -4-on -2-yl)-3-O-
b en zyl-5-O-(ter t-b u t yld ip h en ylsilyl)-2-d eoxy-4-t h io-D-
a r a bitol (21c). Compound 13 (960 mg, 2.0 mmol) was
converted as described for the synthesis of 20a to give a
mixture of 20c and 21c (630 mg, 40%, 20c/21c ) 1.5) as an
amorphous foam: 1H NMR (CDCl3) δ 7.88-7.16 (22H, m, Ar
H, H-6, 5-vinyl H), 6.79 (0.4H, d, 5-vinyl H, J ) 13.2 Hz), 6.45
(0.6H, d, 5-vinyl H, J ) 13.7 Hz), 5.60-5.55 (0.4H, m, H-2′),
5.00-4.93 (0.6H, m, H-2′), 4.69 (0.4H, d, PhCH, J ) 11.7 Hz),
4.61 (1H, d, PhCH, J ) 11.7 Hz), 4.42 (0.6H, d, PhCH, J )
11.7 Hz), 4.36-4.31 (1H, m, H-3′), 3.87 (0.6H, dd, H-5′a, J )
5.9, 10.7 Hz), 3.81 (0.6H, dd, H-5′b, J ) 5.9, 10.7 Hz), 3.71-
3.51 (1.8H, m, H-5′a,b, H-4′×2), 3.36 (0.4H, dd, H-1′a, J ) 4.9,
12.2 Hz), 3.08 (1.2H, d, H-1′a,b, J ) 8.3 Hz), 2.95 (0.4H, dd,
H-1′b, J ) 3.4, 12.2 Hz), 1.08 (5.4H, s, t-Bu), 1.04 (3.6H, s,
t-Bu); FAB-MS m/z 781, 783 (M+ + H).
(2S)-1,4-An h yd r o-2-(N3-ben zoylu r a cil-1-yl)-3-O-ben zyl-
5-O-(ter t-b u t yld ip h en ylsilyl)-2-d eoxy-4-t h io-D-a r a b it ol
(20d ) a n d (2S)-1,4-An h yd r o-2-O-(4-(N3-ben zoylu r a cil-1-
yl)p yr im id in -2-yl)-3-O-ben zyl-5-O-(ter t-bu tyld ip h en ylsi-
lyl)-2-d eoxy-4-th io-D-a r a bitol (22). Compound 13 (1.91 g,
4.0 mmol) was converted as described for the synthesis of 20a
to give a mixture of 20d and 22 (1.10 g, 39%, 20d /22 ) 1.2) as
an amorphous foam: 1H NMR (CDCl3) δ 8.54 (0.45H, d, H-6,
J ) 5.4 Hz), 8.44 (0.45H, d, H-6′′, J ) 8.3 Hz), 7.97-7.17 (21H,
m, Ar H, H-6, H-5), 6.02 (0.45H, d, H-5′′, J ) 8.3 Hz), 5.71-
5.68 (0.45H, m, H-2′), 5.65 (0.55H, d, H-5, J ) 7.8 Hz), 4.95-
4.89 (0.55H, m, H-2′), 4.72 (0.45H, d, PhCH, J ) 11.7 Hz), 4.67
(0.45H, d, PhCH, J ) 11.7 Hz), 4.59 (0.55H, d, PhCH, J )
11.7 Hz), 4.48-4.45 (1H, m, PhCH, H-3′), 4.37 (0.55H, dd, H-3′,
J ) 5.4, 6.9 Hz), 3.95-3.49 (3H, m, H-5′a,b × 2, H-4′ × 2),
3.40 (0.45H, dd, H-1′a, J ) 5.4, 11.7 Hz), 3.12-3.09 (1.1H, m,
H-1′a,b), 3.05 (0.45H, dd, H-1′b, J ) 4.4, 11.7 Hz), 1.06 (4.95H,
s, t-Bu), 1.02 (4.05H, s, t-Bu); FAB-MS m/z 677 (M+ + H) and
771 (M+ + H).
1
from H2O); UV (MeOH) λmax 256 nm; H NMR (DMSO-d6) δ
10.60 (1H, br s, NH), 7.78 (1H, s, H-8), 6.45 (2H, br s, NH2),
5.58 (1H, d, 3′-OH, J ) 5.8 Hz), 4.92 (1H, br s, 5′-OH), 4.59
(1H, dt, H-2′, J ) 7.3, 10.3 Hz), 4.32-4.26 (1H, m, H-3′), 3.88
(1H, br d, H-5′a, J ) 10.7 Hz), 3.46-3.40 (1H, m, H-5′b), 3.23-
3.17 (2H, m, H-1′a, H-4′), 2.97 (1H, dd, H-1′b, J ) 7.3, 10.3
Hz); FAB-MS m/z 284 (M+ + H). Anal. Calcd for C10H13N5O3S‚
0.9H2O: C, 40.10; H, 5.01; N, 23.38. Found: C, 40.33; H, 5.31;
N, 23.12.
(2S)-1,4-An h yd r o-2-(N3-ben zoyl-5-flu or ou r a cil-1-yl)-3-
O-ben zyl-5-O-(ter t-bu tyld ip h en ylsilyl)-2-d eoxy-4-th io-D-
a r a bitol (20a ) a n d (2S)-1,4-An h yd r o-2-O-(N3-ben zoyl-5-
fl u o r o p y r i m i d i n -4 -o n -2 -y l )-3 -O -b e n z y l -5 -O -(t e r t -
bu tyld ip h en ylsilyl)-2-d eoxy-4-th io-D-a r a bitol (21a ).
A
solution of DEAD (2.9 mL, 40% toluene solution, 6.3 mmol)
was added to a mixture of 13 (1.91 g, 4.0 mmol), N 3-benzoyl-
5-fluorouracil (1.40 g, 6.0 mmol), and triphenylphosphine (3.14
g, 4.0 mmol) in CH3CN (64 mL) at 0 °C and stirred for 1 h at
70 °C. After cooling, the reaction was quenched by addition
of EtOH. The solvent was evaporated under reduced pressure,
and the residue was purified by column chromatography over
silica gel (3.6 × 20 cm, 1% MeOH in CHCl3, and then 3.6 × 20
cm, 10-20% AcOEt in hexane) to give less polar 21a (213 mg,
8%) and more polar 20a (497 mg, 18%) as an amorphous foam,
respectively.
1
Da ta for 20a : H NMR (CDCl3) δ 7.87 (2H, dd, Ar H, J )
1.5, 8.8 Hz), 7.70-7.64 (5H, m, Ar H), 7.49-7.18 (14H, m, Ar
H, H-6), 4.98-4.92 (1H, m, H-2′), 4.63 (1H, d, PhCH, J ) 11.7
Hz), 4.42 (1H, d, PhCH, J ) 11.7 Hz), 4.28 (1H, dd, H-3′, J )
5.9, 6.9 Hz), 3.87 (1H, dd, H-5′a, J ) 5.9, 10.7 Hz), 3.81 (1H,
dd, H-5′b, J ) 5.9, 10.7 Hz), 3.53 (1H, q, H-4′, J ) 5.9 Hz),
3.08 (1H, dd, H-1′a, J ) 7.3, 11.7 Hz), 3.00 (1H, dd, H-1′b, J )
8.3, 11.7 Hz), 1.08 (9H, s, t-Bu); FAB-MS m/z 695 (M+ + H).
Anal. Calcd for C39H39N2O5SSiF‚0.75H2O: C, 66.12; H, 5.76;
N, 3.95. Found: C, 66.18; H, 5.66; N, 3.96.
(2S)-1,4-An h yd r o-3-O-ben zyl-5-O-(ter t-bu tyld ip h en yl-
silyl)-2-deoxy-2-(5-flu or ou r acil-1-yl)-4-th io-D-ar abitol (23a).
To a solution of 20a (490 mg, 0.71 mmol) in MeOH-THF (18
mL, 4:5) was added concentrated NH4OH (9 mL) and stirred
for 2 h at room temperature. After the solvent was evaporated
under reduced pressure, the concentrated residue was purified
by column chromatography over silica gel (2.2 × 18 cm, 20-
30% AcOEt in hexane) to give 23a (379 mg, 91%) as an
amorphous foam: 1H NMR (CDCl3) δ 8.49-8.40 (1H, br, NH),
7.68 (4H, dd, Ar H, J ) 1.5, 7.8 Hz), 7.48-7.38 (7H, m, Ar H),
7.28-7.24 (2H, m, Ar H), 7.17-7.14 (3H, m, Ar H, H-6), 4.91-
4.85 (1H, m, H-2′), 4.62 (1H, d, PhCH, J ) 12.2 Hz), 4.40 (1H,
d, PhCH, J ) 12.2 Hz), 4.26 (1H, dd, H-3′, J ) 5.4, 7.3 Hz),
3.84 (2H, d, H-5′a,b, J ) 5.4 Hz), 3.53 (1H, q, H-4′, J ) 5.4
Hz), 3.05 (1H, dd, H-1′a, J ) 7.8, 11.2 Hz), 2.96 (1H, dd, H-1′b,
Da ta for 21a : 1H NMR (CDCl3) δ 8.30-8.12 (3H, m, Ar H,
H-6), 7.71-7.21 (18H, m, Ar H), 5.73-5.70 (1H, m, H-2′), 4.68
(1H, d, PhCH, J ) 12.2 Hz), 4.64 (1H, d, PhCH, J ) 12.2 Hz),
4.47 (1H, t, H-3′, J ) 2.9 Hz), 3.87 (1H, dd, H-5′a, J ) 8.3,
10.3 Hz), 3.71 (1H, dd, H-5′b, J ) 3.4, 10.3 Hz), 3.62-3.58 (1H,
m, H-4′), 3.42 (1H, dd, H-1′a, J ) 4.9, 12.2 Hz), 3.04 (1H, dd,
H-1′b, J ) 3.9, 12.2 Hz), 1.03 (9H, s, t-Bu); FAB-MS m/z 695
(M+ + H). Anal. Calcd for C39H39N2O5SSiF‚0.5hexane: C,
68.36; H, 6.28; N, 3.80. Found: C, 68.34; H, 6.42; N, 3.68.
(2S)-1,4-An h yd r o-2-(N3-ben zoyl-5-m eth ylu r a cil-1-yl)-3-
O-ben zyl-5-O-(ter t-bu tyld ip h en ylsilyl)-2-d eoxy-4-th io-D-
a r a bitol (20b) a n d (2S)-1,4-An h yd r o-2-O-(N3-ben zoyl-5-
m e t h y lp y r i m i d i n -4-o n -2-y l)-3-O -b e n z y l-5-O -(t er t -
bu tyld ip h en ylsilyl)-2-d eoxy-4-th io-D-a r a bitol (21b). Com-
pound 13 (720 mg, 1.5 mmol) was converted as described for
the synthesis of 20a to give a mixture of 20b and 21b (367
mg, 36%, 20b/21b ) 1.3) as an amorphous foam: 1H NMR
(CDCl3) δ 7.88-7.06 (21H, m, Ar H, H-6), 5.56-5.53 (0.43H,
m, H-2′), 4.96-4.90 (0.57H, m, H-2′), 4.68 (0.43H, d, PhCH, J
) 12.2 Hz), 4.62 (0.43H, d, PhCH, J ) 12.2 Hz), 4.60 (0.57H,
d, PhCH, J ) 12.2 Hz), 4.43 (0.57H, d, PhCH, J ) 12.2 Hz),
4.37 (0.57H, dd, H-3′, J ) 5.9, 7.3 Hz), 4.32 (0.43H, t, H-3′, J
) 3.4 Hz), 3.88 (0.57H, dd, H-5′a, J ) 5.9, 10.7 Hz), 3.79
(0.57H, dd, H-5′b, J ) 5.9, 10.7 Hz), 3.74-3.66 (0.86H, m,
H-5′a,b), 3.63-3.59 (0.43H, m, H-4′), 3.52 (0.57H, q, H-4′, J )
5.9 Hz), 3.55 (0.43H, dd, H-1′a, J ) 4.9, 12.2 Hz), 3.12 (0.57H,
dd, H-1′a, J ) 9.3, 11.2 Hz), 3.04 (0.57H, dd, H-1′b, J ) 7.3,
11.2 Hz), 2.95 (0.43H, dd, H-1′b, J ) 3.4, 12.2 Hz), 1.96 (1.29H,
d, 5-Me, J ) 1.0 Hz), 1.83 (1.71H, s, 5-Me), 1.07 (5.13H, s,
t-Bu), 1.03 (3.87H, s, t-Bu); FAB-MS m/z 691 (M+ + H).
J ) 8.8, 11.2 Hz), 1.10 (9H, s, t-Bu); FAB-MS m/z 591 (M+
+
H). Anal. Calcd for C32H35N2O4SSiF‚1.25AcOEt: C, 63.40; H,
6.47; N, 4.00. Found: C, 63.18; H, 6.58; N, 3.99.
(2S)-1,4-An h yd r o-3-O-ben zyl-5-O-(ter t-bu tyld ip h en yl-
silyl)-2-d eoxy-2-(5-m et h ylu r a cil-1-yl)-4-t h io-D-a r a b it ol
(23b) a n d (2S)-1,4-An h yd r o-3-O-ben zyl-5-O-(ter t-bu tyl-
d ip h en ylsilyl)-2-d eoxy-2-O-(5-m eth ylp yr im id in -4(3H)-on -
2-yl)-4-th io-D-a r a bitol (24b). A mixture of compound 20b
and 21b (360 mg, 0.52 mmol) was converted as described for
the synthesis of 23a to give less polar 24b (119 mg, 39%) and
more polar 23b (141 mg, 46%) as an amorphous foam,
respectively.
Da ta for 23b: 1H NMR (CDCl3) δ 8.30 (1H, br s, NH), 7.68
(4H, dd, Ar H, J ) 1.5, 8.3 Hz), 7.47-7.37 (6H, m, Ar H), 7.25-
7.23 (3H, m, Ar H), 7.13-7.11 (2H, m, Ar H), 6.91 (1H, d, H-6,
J ) 1.0 Hz), 4.92-4.85 (1H, m, H-2′), 4.58 (1H, d, PhCH, J )
12.2 Hz), 4.39 (1H, d, PhCH, J ) 12.2 Hz), 4.34 (1H, dd, H-3′,
J ) 5.9, 7.8 Hz), 3.87 (1H, dd, H-5′a, J ) 5.9, 10.3 Hz), 3.82
(1H, dd, H-5′b, J ) 5.9, 10.3 Hz), 3.52 (1H, q, H-4′, J ) 5.9
Hz), 3.08 (1H, dd, H-1′a, J ) 9.3, 11.2 Hz), 3.00 (1H, dd, H-1′b,
J ) 7.3, 11.2 Hz), 1.78 (3H, d, 5-Me, J ) 1.0 Hz), 1.09 (9H, s,