S. Range, D. F.-J. Piesik, S. Harder
FULL PAPER
by GPC measurements of polymer dissolved in chloroform. 1H
NMR measurements have been performed in CDCl3.
Darensbourg, W. Choi, C. P. Richers, Macromolecules 2007, 40,
3521–3523; l) H.-Y. Chen, H.-Y. Tang, C.-C. Lin, Polymer
2007, 48, 2257–2262.
Crystal Structure Determinations: All data were collected on a Sie-
mens SMART CCD diffractometer (Table 3). The structures have
been solved by direct methods (SHELXS-97)[20] and were refined
with SHELXL-97.[21] The geometry calculations and graphics have
been performed with PLATON.[22] All crystals contain one or more
benzene molecules in the lattice. In the crystals of PARA-
[MgN(SiMe3)2·(thf)]2, and [PARA-Ca·(thf)2]2 the enclosed benzene
molecules were ordered and could be refined. The crystals of
PARA-[CaN(SiMe3)2·(thf)2]2 and [PYR-Zn]4 contained some or-
dered benzene molecules that have been refined and some disor-
dered benzene molecules which were treated with the SQUEEZE
procedure incorporated in the program PLATON.[22] Crystals of
[PYR-Zn]4 are extremely sensitive and decompose fast in paraffin
oil. This is likely due to large amounts of incorporated solvent (7
relatively ordered and 2 disordered benzene molecules are found in
the asymmetric unit).
[3]
a) M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc. 1996,
118, 3309–3310; b) R. C. Mathews, D. K. Howell, W.-J. Peng,
S. G. Train, W. D. Treleaven, G. G. Stanley, Angew. Chem.
2006, 118, 2807–2811; Angew. Chem. Int. Ed. Engl. 1996, 35,
2253–2256; c) P. Molenveld, S. Kapsabelis, J. F. J. Engbersen,
D. N. Reinhoudt, J. Am. Chem. Soc. 1997, 119, 2948–2949; d)
R. G. Konsler, J. Karl, E. N. Jacobsen, J. Am. Chem. Soc. 1998,
120, 10780–10781; e) P. Molenveld, J. F. J. Engbersen, D. N.
Reinhoudt, Chem. Soc. Rev. 2000, 29, 75–86; f) E. N. Jacobsen,
Acc. Chem. Res. 2000, 33, 421–431; g) B. M. Trost, T. Mino, J.
Am. Chem. Soc. 2003, 125, 2410–2411; h) D. R. Moore, M.
Cheng, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc.
2003, 125, 11911–11924; i) G. M. Sammis, H. Danjo, E. N. Ja-
cobsen, J. Am. Chem. Soc. 2004, 126, 9928–9929; j) Z. Weng,
S. Teo, Z.-P. Liu, T. S. A. Hor, Organometallics 2007, 26, 2950–
2952; k) C. Li, L. Chen, M. Garland, J. Am. Chem. Soc. 2007,
129, 13327–13334; l) C. Mazet, E. N. Jacobsen, Angew. Chem.
2008, 120, 1786–1789; Angew. Chem. Int. Ed. 2008, 47, 1762–
1765; m) N. Guo, C. L. Stern, T. J. Marks, J. Am. Chem. Soc.
2008, 130, 2246–2261.
a) E. J. Vandenberg, Pure Appl. Chem. 1976, 48, 295–306; b)
W. Braune, J. Okuda, Angew. Chem. 2003, 115, 67–71; Angew.
Chem. Int. Ed. 2003, 42, 64–68; c) E. Schön, X. Zhang, Z.
Zhou, M. H. Chisholm, P. Chen, Inorg. Chem. 2004, 43, 7278–
7280; d) G. W. Coates, D. R. Moore, Angew. Chem. 2004, 116,
6784–6806; Angew. Chem. Int. Ed. 2004, 43, 6618–6639; e) B. Y.
Lee, H. Y. Kwon, S. Y. Lee, S. J. Na, S. Han, H. Yun, H. Lee,
Y.-W. Park, J. Am. Chem. Soc. 2005, 127, 3031–3037; f) M. F.
Pilz, C. Limberg, B. B. Lazarov, K. C. Hultzsch, B. Ziemer, Or-
ganometallics 2007, 26, 3668–3676.
For reviews, see: a) A. L. Gavrilova, B. Bosnich, Chem. Rev.
2004, 104, 349–384; b) E. K. van den Beuken, B. L. Feringa,
Tetrahedron 1998, 54, 12985–13011; c) H. Steinhagen, G.
Helmchen, Angew. Chem. 1996, 108, 2489–2492; Angew. Chem.
Int. Ed. Engl. 1996, 35, 2339–2342; d) N. Sträter, W. N. Lip-
scomb, T. Klabunde, B. Krebs, Angew. Chem. 1996, 108, 2158–
2191; Angew. Chem. Int. Ed. Engl. 1996, 35, 2024–2055; e) C.
Belle, C. J.-L. Pierre, Eur. J. Inorg. Chem. 2003, 4137–4146; f)
O. E. Fenton, Chem. Soc. Rev. 1999, 28, 159–168.
a) S. Yamada, Coord. Chem. Rev. 1999, 190–192, 537–555; b)
J. F. Larrow, E. N. Jacobsen, Top. Organomet. Chem. 2004, 6,
123–152.
M. A. Van Aelstyn, T. S. Keizer, D. L. Klopotek, S. Liu, M.-
A. Munoz-Hernandez, P. Wei, D. A. Atwood, Organometallics
2000, 19, 1796–1801.
Metal···metal distances based on simple geometrical calcula-
tions using a general M–O and M–N distance of 2.5 Å.
G. A. Morris, H. Zhou, C. L. Stern, S. T. Nguyen, Inorg. Chem.
2001, 40, 3222–3227.
W. Ostwald, Lehrbuch der Allgemeinen Chemie, Engelmann,
Leipzig, Germany, 1896, vol. 2, part 1.
a) D. G. Blackmond, Chem. Eur. J. 2007, 13, 3290–3295; b)
W. L. Noorduin, T. Izumi, A. Millemaggi, M. Leeman, H.
Meekes, W. J. P. van Enckevort, R. M. Kellogg, B. Kaptein, E.
Vlieg, D. G. Blackmond, J. Am. Chem. Soc. 2008, 130, 1158–
1159.
a) N. Yoshida, K. Ichikawa, M. Shiro, J. Chem. Soc. Perkin
Trans. 2 2000, 17–26; b) A. W. Kleij, M. Kuil, D. M. Tooke,
A. L. Spek, J. N. H. Reek, Inorg. Chem. 2007, 46, 5829–5831.
A. Shafir, D. Fiedler, J. Arnold, J. Chem. Soc., Dalton Trans.
2002, 555–560.
C. A. Hunter, Chem. Soc. Rev. 1994, 23, 101.
A. Trösch, H. Vahrenkamp, Z. Anorg. Allg. Chem. 2004, 630,
2031–2034.
CCDC-678735 {for PARA-[CaN(SiMe3)2·(thf)2]2}, -678736 {for
[PARA-Ca·(thf)2]2}, -678737 {for PARA-[MgN(SiMe3)2·(thf)]2},
and -678738 (for [PYR-Zn]4) contain the supplementary crystallo-
graphic data. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[4]
Acknowledgments
We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for
support of this project within the AM2-net framework. Prof. Dr.
R. Boese and D. Bläser (University Duisburg-Essen) are thanked
for collection of X-ray diffraction data.
[5]
[1] a) S. Harder, F. Feil, K. Knoll, Angew. Chem. 2001, 113, 4391–
4394; Angew. Chem. Int. Ed. 2001, 40, 4261–4264; b) M. R.
Crimmin, I. J. Casely, M. S. Hill, J. Am. Chem. Soc. 2005, 127,
2042–2043; c) F. Buch, J. Brettar, S. Harder, Angew. Chem.
2006, 118, 2807–2811; Angew. Chem. Int. Ed. 2006, 45, 2741–
2745; d) M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. A.
Procopiou, Org. Lett. 2007, 9, 331–333; e) M. R. Crimmin,
A. G. M. Barrett, M. S. Hill, P. B. Hitchcock, P. A. Procopiou,
Organometallics 2007, 26, 2953–2956; f) S. Datta, P. W. Roesky,
S. Blechert, Organometallics 2007, 26, 4392–4394; g) F. Buch,
S. Harder, Organometallics 2007, 26, 5132–5135; h) J. Spiel-
mann, S. Harder, Eur. J. Inorg. Chem. 2008, early view; i) M. R.
Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitchcock, P. A.
Procopiou, Organometallics 2008, 27, 497–499.
[2] a) M. H. Chisholm, N. W. Eilerts, J. C. Huffman, S. S. Iyer, M.
Pacold, K. Phomphrai, J. Am. Chem. Soc. 2000, 122, 11845–
11854; b) Z. Zhong, P. J. Dijkstra, C. Birg, M. Westerhausen,
J. Feijen, Macromolecules 2001, 34, 3863–3868; c) B. M. Cham-
berlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky,
G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229–3238; d)
M. H. Chisholm, J. Gallucci, K. Phomphrai, Inorg. Chem.
2002, 41, 2785–2794; e) M. H. Chisholm, J. Gallucci, K.
Phomphrai, Chem. Commun. 2003, 48–49; f) Z. Zhong, S.
Schneiderbauer, P. J. Dijkstra, M. Westerhausen, J. Feijen, Po-
lym. Bull. 2003, 51, 175–182; g) M. H. Chisholm, J. Gallucci,
K. Phomphrai, Inorg. Chem. 2004, 43, 6717–6725; h) A. P.
Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, D. J. Wil-
liams, Dalton Trans. 2004, 570–578; i) J.-C. Wu, B.-H. Huang,
M.-L. Hsueh, S.-L. Lai, C.-C. Lin, Polymer 2005, 46, 9784–
9792; j) Y. Sarazin, R. H. Howard, D. L. Hughes, S. M. Hum-
phrey, M. Bochmann, Dalton Trans. 2006, 340–350; k) D. J.
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
Y. Xiao, Z. Wang, K. Ding, Macromolecules 2006, 39, 128–
137.
3450
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 3442–3451