20
I. Le Gall et al. / Journal of Organometallic Chemistry 567 (1998) 13–20
Table 5
[11] S. Bischoff, A. Weigt, H. Miessner, B. Lu¨cke, J. Mol. Catal. A:
Chem. 107 (1996) 339.
[12] (a) 3a: w(CO): 2085, 2000 cm−1, w(PO): 1260 cm−1. (b) 3b:
w(CO): 2090, 2000 cm−1, w(PO): 1260 cm−1 31P-NMR, l: 24.1
Crystal data and structure refinement for 16
Formula
Rh2Cl2P2C16H30O8
689.08
Orthorhombic
Pbca
13.289(3)
17.511(9)
22.538(5)
5245(3)
8
1.745
2752
16.00
293
0.15×0.30×0.40
Mo–Kh
50
0–15; 0–20; 0–26
5124
2603 (4.0|)
0.095
0.072
;
Molecular weight
Crystal system
Space group
ppm (dd, 1JPRh=115.9 Hz, 3JPP(O)=47.8 Hz), 25.5 ppm (d,
3JPP(O)=47.8 Hz). The observation of two almost equally in-
tense bands in the (CO) region of the IR spectrum (:2090,
2000 cm−1, CH2Cl2) is in accord with cis Rh(Cl)(CO)2(L) com-
plexes [13]. A 31P-NMR shift downfield from the corresponding
˚
a (A)
˚
b (A)
1
˚
c (A)
resonance of uncoordinated phosphine and a JPRh of 115–125
3
˚
V (A )
Hz are observed.
Z
[13] (a) A.J. Pribula, R.S. Drago, J. Am. Chem. Soc. 98 (1976) 2784.
(b) R. Poilblanc, J. Gallay, J. Organomet. Chem. 21 (1971) C53.
[14] (a) 4a: w(CO): 1990 cm−1, w(PO): 1160 cm−1. (b) 4b: w(CO):
zcalc (g cm−3
F(000)
)
v(Mo–Kh) (cm−1
T (K)
)
1990 cm−1, w(PO): 1160 cm−1 31P-NMR, l: 33.3 ppm (d,
;
1JPRh=158 Hz), 45.7 ppm (s). The observation of one intense
band in the (CO) region of the IR spectrum (:1990 cm−1
,
Crystal size (mm)
Radiation
Max 2q (°)
Range of hkl
No. of reflections measured
No. of reflections observed (I\|(I))
R (isotropic)
R (anisotropic)
CH2Cl2) is in accord with cis-Rh(Cl)(CO)(L)(L%) complexes [15].
The value of the IR frequency w(PꢀO) represents an energy
decrease of ca. 100 cm−1 showing the coordination of the
phosphonate group [11]. A 31P-NMR shift downfield from the
corresponding resonance of free phosphonate is observed.
[15] R.W. Wegman, A.G. Abatjoglou, A.M. Harisson, J. Chem. Soc.
Chem. Commun. (1987) 1891.
Fourier difference
N(obs.)/N(var.)
R
0.36–0.15
2603/256
0.061
[16] P.R. Sharp, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.),
Comprehensive Organometallic Chemistry, vol. 8, Pergamon,
Oxford, 1985, p. 115.
Rw
0.048
[17] S. Ganguly, J.T. Mague, D.M. Roundhill, Inorg. Chem. 31
(1992) 3500.
w=1/|(Fo)2=[|2(I)+(0.004F2o)2]−1/2
[18] (a) 5a: w(CO): 2095, 2000 cm−1
;
31P-NMR, l: 28.0 ppm (d,
31P-NMR, l:
31.3 ppm (d, 1JPRh=124.8Hz). (c) 6a: w(CO): 1990 cm−1
31P-NMR, l: 38.1 ppm (d, 1JPRh=173.7Hz). (d) 6b: w(CO): 1970
Sw
3.37
0.48
0.02
3
˚
1JPRh=125.0Hz). (b) 5b: w(CO): 2080, 2000 cm−1
;
Max residual (e A )
D/|
;
cm−1
;
31P-NMR, l: 43.0 ppm (d, 1JPRh=173.2Hz).
[19] 8: w(CO): 1990 cm−1
;
31P-NMR (273 K), l: 42.9 ppm (dd,
1JPRh=167.7Hz, 3JPP(O)=45.5Hz), 27.1 ppm (d, JP(O)P(O)
=
2
sure pump. After the reaction time quoted in Tables 1
and 2, the autoclave was cooled and flushed with
nitrogen. The reaction products were analysed by GC.
7.5Hz), 19.0 ppm (dd, 3JP(O)P=45.5Hz, 2JP(O)P(O)=45.5Hz).
[20] One band is observed in the (CO) region of the IR spectrum;
the 31P-NMR resonance of the phosphine (60.6 ppm) is shift
downfield from the corresponding resonance of free phosphine
(−20.0 ppm), 1JPRh=172.5Hz.
[21] (a) 10: 31P-NMR (CDCl3), l: 26.3 ppm (d, J=149.2Hz). (b) 11:
31P-NMR (CDCl3), l: 41.7 ppm (d, J=160.4Hz).
[22] G.K. Anderson, R. Kumar, Inorg. Chim. Acta 146 (1988) 89.
[23] C. Abu-Gnim, I. Amer, J. Chem. Soc. Chem. Commun. (1994)
115.
References
[1] J.C. Jeffrey, T.B. Raucgfuss, Inorg. Chem. 18 (1979) 2658.
[2] J.A. Davies, F.R. Hartley, Chem. Rev. 81 (1981) 79.
[3] A. Bader, E. Lindner, Coord. Chem. Rev. 108 (1991) 27, and
references therein.
[4] E. Lindner, M. Haustein, H.A. Mayer, K. Gierling, R. Fawzi,
M. Steimann, Organometallics 14 (1995) 2246, and references
therein.
[24] I. Le Gall, P. Laurent, L. Toupet, J-Y. Salau¨n, H. des Abbayes,
Organometallics 16 (1997) 3579.
[25] M.J. Baker, M.F. Giles, A.G. Orpen, M.J. Taylor, R.J. Watt, J.
Chem. Soc. Chem. Commun. (1995) 197.
[26] T.C. Blagborough, R. Davis, P. Ivison, J. Organomet, Chem.
476 (1994) 85.
[5] T.B. Higgins, C.A. Mirkin, Inorg. Chim. Acta 240 (1995) 347,
and references therein.
[27] G.K. Anderson, R. Kumar, J. Organomet. Chem. 342 (1988)
263.
[28] M. Aresta, E. Quaranta, S. Treglia, J.A. Ibers, Organometallics
7 (1988) 577.
[29] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of
Laboratory Chemicals, Pergamon, Oxford, UK, 1981.
[30] International Tables for X-ray Crystallography, vol. VI, Kynoch
Press, Birmingham, UK, 1974.
[6] G.W. Parshall, Homogeneous Catalysis, Wiley, New York, 1980.
[7] C. Master, Homogeneous Transition Catalysis, Chapman and
Hall, London, 1981.
[8] E. Lindner, A. Sickinger, P. Wegner, J. Organomet. Chem. 349
(1988) 75.
[9] E. Lindner, A. Bader, H. Bra¨unling, R. Jira, J. Mol. Catal. 57
(1990) 291.
[10] C. Abu-Gnim, I. Amer, J. Mol. Catal. 85 (1993) 275.
.
.