10.1002/anie.201906692
Angewandte Chemie International Edition
COMMUNICATION
[6]
For reviews, see: a) T. Moragas, A. Correa, R. Martin, R. Chem. Eur. J.
2014, 20, 8242; b) C. E. I Knappke,.S. Grupe, D. Gärtner, M. Corpet, C.
Gosmini, J. von Wangelin, Chem. Eur. J. 2014, 20, 6828; c) J. Gu, X.
Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411; d) D. J. Weix,
Acc. Chem. Res. 2015, 48, 1767.
G. H. M. Davies, G. A. Molander, ACS Catal. 2017, 7, 5129; d) B. A. Vara,
M. Jouffroy, G. A. Molander, Chem. Sci. 2017, 8, 530.
[11] See Supporting Information for further details.
[12] For selected examples, see: a) X. Li, X. Xu, P. Hu, X. Xiao, C. Zhou, J.
Org. Chem. 2013, 78, 7343; b) D. Xia, T. Miao, P. Li, L. Wang, Chem.
Asian. J. 2015, 10, 1919; c) H. Wang, S. Sun, J. Cheng, Org. Lett. 2017,
19, 5844; d) X.-Q. Chu, H. Meng, X.-P. Xu, S.-J. Ji, Shun-Jun, Chem.
Eur. J. 2015, 21, 11359; e) S.-F. Wang, C.-P. Chuang, J.-H. Lee, S.-T.
Liu, Tetrahedron 1999, 55, 2273. For three-component vicinal
carbosulfonylations involving C-Ar bond formation on allenes: f) N. Vicart,
B. Gazes, J. Gore, Tetrahedron 1996, 52, 9101; g) Y. Hou, Q. Shen, Z.
Li, S. Chen, Y. Zhao, M. Qin, P. Gon Adv. Synth. Catal. 2018, 360, 631.
[13] a) A. U. Meyer, K. Straková, T. Slanina, B. König, Chem. Eur. J. 2016,
22, 8694. For a review on the use of sulfinates in organic synthesis, see:
b) J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem. 2014,
12, 9743 and references therein.
[7]
For selected reviews, see: a) J. Twilton, C. C. Le, P. Zhang, M. H. Shaw,
R. W. Evans, D. W. C. MacMillan, Nature Rev. Chem. 2017, 1, 0052; b)
J. K. Matsui, S. B. Lang, D. R. Heitz, G. A. Molander, ACS Catal. 2017,
3, 522. d) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Pattel,
G. A. Molander, Acc. Chem. Res. 2016, 49, 1429; e) J. A. Milligan, J. P.
Phelan, S. O. Badir, G.A. Molander, Angew. Chem. Int. Ed. 2019, DOI:
10.1002/anie.201809431.For selected examples, see: f) Z. Zuo, D. T.
Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science
2014, 345, 437; g) J. Twilton, M. Christensen, D. A. DiRocco, R. T. Ruck,
I. W. Davies, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2018, 57, 5369;
h) R. Alam, G. A. Molander, J. Org. Chem. 2017, 82, 13728; i) B. A. Vara,
N. R. Patel, G. A. Molander, ACS Catal. 2017, 7, 3955; j) Z. Zuo, H. Cong,
W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem. Soc. 2016,
138, 1832; k) Z. Duan, W. Li, A. Lei, Org. Lett. 2016, 18, 4012; For an
indoline synthesis under Nickel/Photoredox Dual Catalysis: l) S. Z.
Tasker, T. F. Jamison, J. Am. Chem. Soc. 2015, 137, 9531.
[14] For recent examples of coupling reactions using haloarenes with
sulfinates under photoredox catalysis, see: a) M. J. Cabrera-Alfonso, Z.-
P. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez, G. A. Molander,
Chem. Sci. 2018, 9, 3186; b) N.-W. Liu, K. Hofman, A. Herbert, G.
Manolikakes, Org. Lett. 2018, 20, 760; c) H. Yue, C. Zhu, A. Rueping,
Angew. Chem. Int. Ed. 2018, 57, 1371; d) T. Knauber, R.
Chandrasekaran, J. W. Tucker, J. M. Chen, M. Reese, D. A. Rankic, N.
Sach, C. Helal, Org. Lett. 2017, 19, 6566.
[8]
a) N. Fuentes, W. Kong, L. Fernández-Sánchez, E. Merino, C. Nevado,
J. Am. Chem. Soc. 2015, 137, 964; b) Z. Li, A. García-Domínguez, C.
Nevado, J. Am. Chem. Soc. 2015, 137, 11610; c) Z. Li, A. García-
Domínguez, C. Nevado, Angew. Chem Int. Ed. 2016, 55, 6938; d) W.
Shu, A. Lorente, E. Gómez-Bengoa, C. Nevado, Nature Commun. 2017,
8, 13832; e) A. García-Domínguez, S. Müller, C. Nevado, Angew. Chem.
Int. Ed. 2017, 56, 9949; f) W. Shu, E. Merino, C. Nevado, ACS Catal.
2018, 8 6401.
[15] H. Fischer, L. Radom, Angew. Chem. Int. Ed. 2001, 40, 1340.
[16] M. Newcomb, Tetrahedron 1993, 49, 1151.
[17] A previous study on Csp3-Csp3 Negishi cross-coupling suggests that the
key C-C bond formation process may happen at a higher rate: V. B.
Phapale, E. Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem.
Int. Ed. 2007, 46, 8790.
[9]
a) V. Corcé, L.-M. Chamoreau, E. Derat, J.-P. Goddard, C. Ollivier, L.
Fensterbank, Angew. Chem. Int. Ed. 2015, 54, 11414; b) Y. Nishigaichi,
A. Suzuki, A. Takuwa, Tetrahedron Lett. 2007, 48, 211; c) D. Matsuoka,
Y. Nishigaichi, Chem. Lett. 2014, 43, 559. For redox potential of common
photocatalysts, see: d) C. K. Prier, D. A. Rankic, D. W. C. Macmillan,
Chem. Rev. 2013, 113, 5322.
[18] For studies showing the favourable addition of benzyl radicals to Ni(0),
see: O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander, M. C.
Kozlowski, J. Am. Chem. Soc. 2015, 137, 4896.
[19] Based on photophysical characterization experiments, an alternative
mechanism involving a photoredox induced radical-chain mechanism in
which, after an initiation cycle by the Ru-catalyst, Ni species serve as
oxidant for the formation of the Nu-type radicals cannot be ruled out. See
ref. 11.
[10] For selected examples on alkyl-aryl cross-couplings using dual
ruthenium/nickel catalysis, see: a) M. Jouffroy, D. N. Primer, G. A.
Molander, J. Am. Chem. Soc. 2016, 138, 475; b) N. R. Patel, G. A.
Molander, J. Org. Chem. 2016, 81, 7271; c) K. Lin, R. J Wiles, C. B. Kelly,
This article is protected by copyright. All rights reserved.