amination of the known asymmetric oxazolidinone prepara-
tion methods, we envisioned an additional approach using
the Sharpless asymmetric aminohydroxylation8 of a styrene
derivative followed by base-mediated selective ring closure
of the carbamate to afford oxazolidinones in a single step
(Scheme 1). During the development of this procedure, Li
potassium carbonate mediated ring closure.9 Herein, we wish
to report preliminary examples of a practical, one-pot
conversion of disubstituted styrene derivatives to chiral
oxazolidin-2-ones using a modified Sharpless carbamate-
based asymmetric aminohydroxylation that has been dem-
onstrated on both small (mg) and large (kg) scale.10
Of the many aminohydroxylation procedures reported by
Sharpless, only those utilizing a carbamate as the nitrogen
source were suitable for use in the direct conversion to
oxazolidinones (Scheme 2).8e,f,h,k According to Sharpless, the
Scheme 1
Scheme 2
reported a two-step process for the conversion of unsubsti-
tuted styrene derivatives to chiral oxazolidin-2-ones using a
(4) (a) Bergmeier, S. C.; Stanchina, D. M. J. Org. Chem. 1999, 64, 2852.
(b) Ten Holte, P.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 1998, 39,
7407. (c) Le Gendre, P.; Thominot, P.; Bruneau, C.; Dixneuf, P. H. J. Org.
Chem. 1998, 63, 1806. (d) Bach, T.; Schro¨der, J. Tetrahedron Lett. 1997,
38, 3707-10. (e) Lu¨tzen, A.; Ko¨ll, P. Tetrahedron: Asymmetry 1997, 8,
1193-206. (f) Clayden, J.; Nelson, A.; Warren, S. Tetrahedron Lett. 1997,
38, 3471-4. (g) Delft, F. L. v.; Timmers, C. M.; Marel, G. A. V. D.; Boom,
J. H. v. Synthesis 1997, 450-4. (h) Larksarp, C.; Alper, H. J. Am. Chem.
Soc. 1997, 119, 3709-15. (I) Rao, B. V.; Krishna, U. M.; Gurjar, M. K.
Synth. Commun. 1997, 27, 1335. (j) Matsunaga, H.; Ishizuka, T.; Kunieda,
T. Tetrahedron 1997, 53, 1275-94. (k) Ru¨ck-Braun, K.; Stamm, A.; Engel,
S.; Ku¨nz, H. J. Org. Chem. 1997, 62, 967-75. (l) Bergmeier, S. C.; Stanchia,
D. M. J. Org. Chem. 1997, 62, 4449-56. (m) Ghosh, A. K.; Cho, H.; Onishi,
M. Tetrahedron: Asymmetry 1997, 8, 821. (n) Banks, M. R.; Blake, A. J.;
Cadogan, J. I. G.; Doyle, A. A.; Gosney, I.; Hodgson, P. K. G.; Thorburn,
P. Tetrahedron 1996, 52, 4079-94. (o) Ambroise, L.; Jackson, R. F. W.
Tetrahedron Lett. 1996, 37, 2311. (p) Cardillo, G.; Gentilucci, L.; Tomasini,
C.; Tomasoni, L. Tetrahedron: Asymmetry 1995, 6, 1947-55. (q) Jung,
M. E.; Jung, Y. H. Synlett 1995, 563. (r) Blas, J. D.; Carretero, J. C.;
Dominguz, E. Tetrahedron Lett. 1994, 35, 4603. (s) Xu, D.; Sharpless, K.
B. Tetrahedron Lett. 1993, 34, 951. (t) Banks, M. R.; Blake, A. J.; Cadogan,
J. I. G.; Dawson, I. M.; Gaur, S.; Gosney, I.; Gould, R. O.; Grant, K. J.;
Hodgson, P. K. G. J. Chem. Soc., Chem. Commun. 1993, 1146. (u) Trost,
B. M.; Van Vraiken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.
(v) Ghosh, A. K.; Duong, T. T.; McKee, S. P. Chem. Commun. 1992, 1673-
4. (w) Katsumura, S.; Kondo, A.; Han, Q. Chem. Lett. 1991, 1245. (x)
Sato, T.; Mizutani, T.; Okumura, Y.; Fujisawa, F. Tetrahedron Lett. 1989,
30, 3701.
chemo-, regio-, and enantioselectivity of the aminohydroxyl-
ation reaction can be readily controlled by small variations
in the reaction parameters. In addition, these previous reports
support a suprafacial addition of nitrogen and oxygen to the
olefin, wherein asymmetric aminohydroxylation of trans-
olefins would afford trans-oxazolidinones.8e The most favor-
able conditions for carbamate-based aminohydroxylation of
styrenes resulting in benzylic amination are given as urethane
with PHAL ligands in n-PrOH/water solvent systems using
tert-butyl hypochlorite as the co-oxidant, so this was our
starting point.
The requirement for 3 equiv of freshly prepared tert-butyl
hypochlorite was untenable for large scale development of
an aminohydroxylation-based process. Therefore, alternative
co-oxidants/chlorine sources were examined for utility in the
asymmetric aminohydroxylation reaction. Despite the fact
that NCS, cyanuric chloride, and trichloroisocyanuric acid
were unsuccessful substitutes for tert-butyl hypochlorite,
either 1,3-dichloro-5,5-dimethyl hydantoin or dichloroiso-
(5) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. ReV. 1996, 96, 835-
75.
(6) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982,
104, 1737.
(7) Takacs, J. M.; Jaber, M. R.; Vellekoop, A. S. J. Org. Chem. 1998,
63, 2742-8.
(9) (a) Li, G.; Lenington, R.; Willis, S.; Kim, S. H. J. Chem. Soc., Perkin
Trans. 1 1998, (11), 1753-4. (b) The work described herein was initiated
in mid-1997.
(10) (a) Typical Experimental Procedure. 4(S)-(3,4-Difluorophenyl)-
5(S)-methyloxazolidin-2-one. Sodium hydroxide (1.57 g, 39.3 mmol) was
dissolved in 50 mL of H2O. A 1-mL aliquot of the NaOH solution was
used to dissolve K2OsO2(OH)4 (0.048 g, 0.13 mmol) in a separate vial.
1-Propanol (25 mL) and ethyl carbamate (3.56 g, 40.0 mmol) were added
to the reaction flask at 20 °C, followed by 1,3-dichloro-5,5-dimethylhy-
dantoin (3.89 g, 19.7 mmol); the solids dissolved in approximately 5 min.
A solution of (DHQ)2PHAL (0.125 g) and trans-1-(3,4-difluorophenyl)-1-
propene (2.0 g, 12.97 mmol) in 25 mL of 1-propanol was added, followed
by addition of the potassium osmate solution. The reaction was monitored
for the disappearance of olefin using HPLC. A mixture of the hydroxy
carbamates was obtained in a 4:1 ratio, as determined by NMR or by HPLC.
Sodium hydroxide (2 g) was added to the flask at 20 °C. After 30 min, the
reaction mixture was diluted with H2O (50 mL) and extracted with 2 × 50
mL of EtOAc. The organic layers were combined and concentrated, and
the oxazolidinone products were purified by column chromatography. The
product was isolated as a pale yellow oil and was determined to have 90%
ee by SFC: 1H NMR (CDCl3) δ 7.19 (m, 2H), 7.08 (m, 1H), 5.58 (s, 1H),
4.41 (m, 2H), 1.51 (d, J ) 5.9 Hz, 3H). (b) Satisfactory analytical data
(IR, H NMR, C NMR, and elemental analysis) was obtained for all new
products.
(8) (a) Gontcharov, A. V.; Liu, H.; Sharpless, K. B. Org. Lett. 1999, 1,
783-6. (b) Pringle, W.; Sharpless, K. B. Tetrahedron Lett. 1999, 40, 5151-
4. (c) Goossen, L. J.; Liu, H.; Dress, R.; Sharpless, K. B. Angew. Chem.
Int. Ed. 1999, 38, 1080-3. (d) Dress, K. R.; Goossen, L. J.; Liu, H.; Jerina,
D. M.; Sharpless, K. B. Tetrahedron Lett. 1998, 39, 7669-72. (e) Kolb,
H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis; Beller,
M., Bolm, C., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998;
Vol. 2, pp 243-60. (f) Reddy, K. L.; Dress, K. R.; Sharpless, K. B.
Tetrahedron Lett. 1998, 39, 3667-70. (g) Tao, B.; Schlingloff, G.; Sharpless,
K. B. Tetrahedron Lett. 1998, 39, 2507-10. (h) Reddy, K. L.; Sharpless,
K. B. J. Am. Chem. Soc. 1998, 120, 1207-17. (i) Rubin, A. E.; Sharpless,
K. B. Angew. Chem., Int. Ed. Engl. 1997, 36, 2637-40. (j) Bruncko, M.;
Schlingloff, G.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1997, 36,
1483-6. (k) Li, G.; Angert, H. H.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2813-7. (l) Rudolph, J.; Sennhenn, P. C.; Vlaar, C. P.;
Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 2810-3. (m) Li,
G.; Sharpless, K. B. Acta Chem. Scand. 1996, 50, 649-51. (n) Li, G.;
Chang, H.-T.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35,
451-4. (o) O’Brien, P.; Osborne, S. A.; Parker, D. D. Tetrahedron Lett.
1998, 39, 4099-102.
2822
Org. Lett., Vol. 2, No. 18, 2000