C(18)
C(17)
C(19)
C(21)
N(1)
N(4)
C(16)
C(3)
C(2)
C(22)
C(23)
C(24)
C(4)
C(5)
C(14)
C(8)
C(34)
C(29)
C(20)
C(1)
C(13)
C(11)
N(3)
C(28)
C(8)
C(33)
C(32)
C(7)
O(4)
N(5)
O(2)
N(2)
C(12)
C(27)
C(36)
O(1)
C(38)
O(3)
C(6)
C(26)
C(25)
C(30)
C(35)
C(10)
C(31)
C(15)
C(37)
C(39)
Fig. 1 ORTEP15 view of the ligand L5 with ellipsoids represented at 50% probability level
Table 1 Phase-transition temperatures and enthalpy and entropy changes for
ligands L1–L4 and complex [LuL2(NO3)3]·H2O
Footnotes and References
* E-mail: claude.piguet@chiam.unige.ch
¯
† Crystal data for L5: C39H37N5O4, M = 639.8, triclinic, space group P1,
a = 10.315(1), b = 11.8767(7), c = 14.170(1) Å, a = 105.076(5), b
= 108.972(6), g = 95.109(5)°, U = 1556.2(2) Å3 (by least-squares
DH/kJ
DS/J
Compound
Transitiona
T/°C
mol21
mol21 K21
refinement of 24 reflections, 57 @ 2q @ 76°), Z = 2, Dc = 1.37 g cm23
,
L1
L2
K–I
107
132
98
80
50
—
211
122
—
37
86
—
—
14e
66
—
39
176
—
50
F(000) = 676. Yellow prisms. Crystal dimensions 0.15 3 0.20 3 0.37
mm, m(Cu-Ka) = 0.721 mm21. Data Collection and Processing: Stoe
STADI4 diffractometer, T = 200 K, w–2q scan, scan width = 1.05 + 0.35
tanq, scan speed 0.06° s21, Cu-Ka radiation (l = 1.5418 Å); 3741
reflections measured (3 @ 2q @ 105°, 210 < h < 10, 212 < k < 11, 0
< l < 14), 3561 unique reflections (Rint for equivalent reflections = 0.017)
of which 3091 were observable [ıFoı > 4s(Fo)]. Two reference reflexions
were measured every 45 min and showed no variation in intensity. Structure
analysis and refinement: data were corrected for Lorentz, polarization and
absorption effects12 (A*min = 1.102, A*max = 1.186). The structure was
solved by direct methods using MULTAN 87;13 all other calculations used
XTAL14 system and ORTEP II15 programs. Full-matrix least-squares
refinements (on F) using weights of w = 1/[s2(Fo) + 0.0001(Fo2)] gave
final values R = 0.044, Rw = 0.049, for 434 variables and 3091 contributing
reflections. All non-H atoms were refined with anisotropic displacement
parameters. H-atoms were placed in calculated positions and contributed to
Fc calculations. CCDC 182/599.
K–SA
(SC–SA)b
SA–I
K–SC
SC–SA
SA–N
N–I
K–SA
(SC–SA)b
SA–I
K–SA
(SC–SA)b
SA–I
c
188
131
217
223
226
144
107f
193
133
98
17
35
—
L3
c
d
—
7e
28
—
18
72
L4
[LuL2(NO3)3]
c
—
188
23
a K = crystal, SC = smectic C phase, SA = smectic A phase, N = nematic
phase, I = isotropic fluid; temperatures are given as the onset of the peak
(Seiko DSC 220C differential scanning calorimeter, 5 °C min21, under N2);
the liquid crystalline phases were identified from their optical textures:
SC = broken focal-conic fan and schlieren textures; SA = focal-conic fan
texture and homeotropic zones; N = schlieren and marbled textures.
b Monotropic transition. c Second-order transition determined by polarized
optical microscopy. d Masked by isotropization. e Cumulated enthalpies and
entropies. f Approximate value: the SC phase formed during the crystalliza-
tion process.
1 For reviews see: C. Piguet and J.-C. G. Bu¨nzli, Eur. J. Solid State Inorg.
Chem., 1996, 33, 165; C. Piguet, J.-C. G.Bu¨nzli, G. Bernardinelli,
G. Hopfgartner and A. F. Williams, J. Alloys Compd., 1995, 225, 324;
C. Piguet, Chimia, 1996, 50, 144.
2 S. Petoud, J.-C. G. Bu¨nzli, F. Renaud and C. Piguet, J. Alloys Compd.,
1997, 249, 14.
3 C. Piguet, A. F. Williams, G. Bernardinelli and J.-C. G. Bu¨nzli, Inorg.
Chem., 1993, 32, 4139; C. Piguet, J.-C. G. Bu¨nzli, G. Bernardinelli,
C. G. Bochet and P. Froidevaux, J. Chem. Soc., Dalton Trans., 1995,
83.
and polarized optical microscopy (Table 1). The ligand L1
(three-atom spacers) does not show mesogenic behaviour.
However, the ligands L2–L4, which possess two-atom spacers,
display interesting mesomorphism: they all present disordered
smectic C and smectic A phases. An additional nematic phase is
obtained for L3. Interestingly, the mesomorphic behaviour of L2
is essentially retained in the lanthanide complexes. In [LaL2-
(NO3)3]·3H2O, the melting process (130 °C) is associated with
a fast decomposition which prevents an unambigous character-
ization of the mesophase(s), but the analogous complex
[LuL2(NO3)3]·H2O melts at 133 °C to give a stable SA phase
which isotropizes at 188 °C. Although the temperatures of the
K ? SA and SA ? I transitions are similar for L2 and its
complex [LuL2(NO3)3]·H2O, the enthalpy and entropy changes
are significantly larger for the latter compound.
4 C. Piguet, E. Rivara-Minten, G. Bernardinelli, J.-C. G. Bu¨nzli and
G. Hopfgartner, J. Chem. Soc., Dalton Trans., 1997, 421.
5 C. Piguet, J.-C. G. Bu¨nzli, G. Bernardinelli, G. Hopfgartner, S. Petoud
and O. Schaad, J. Am. Chem. Soc., 1996, 118, 6681.
6 C. Piguet, J.-C. G. Bu¨nzli, G. Bernardinelli, G. Hopfgartner and
A. F. Williams, J. Am. Chem. Soc., 1993, 115, 8197.
7 Z. K. Wang, C. H. Huang and F. Q. Zhou, Solid State Commun., 1995,
95, 223; Y. Galymetdinov, A. M. Athanassopoulou, O. Kharitonova,
E. A. Soto-Bustamante, I. K. Ovchinnikov and W. Hasse, Chem. Mater.,
1996, 8, 922; I. Bikhantaev, Y. Galymetdinov, O. Kharitonova,
I. K. Ovchinnikov, D. W. Bruce, D. A. Dunmur, D. Guilter and
B. Heinrich, Liq. Cryst., 1996, 20, 489.
8 C. Piguet, A. F. Williams, G. Bernardinelli, E. Moret and J.-C. G.
Bu¨nzli, Helv. Chim. Acta, 1992, 75, 1697.
9 C. Piguet, B. Bocquet and G. Hopfgartner, Helv. Chim. Acta, 1994, 77,
931.
10 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and
R. Taylor, J. Chem. Soc., Dalton Trans., 1987, S1.
11 S. Petoud, J.-C. G. Bu¨nzli, K. J. Schenk and C. Piguet, Inorg. Chem.,
1997, 36, 1345.
12 E. Blanc, D. Schwarzenbach and H. D. Flack, J. Appl. Crystallogr.,
1991, 24, 1035.
13 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, D. Germain, J. P. Declercq
and M. M. Woolfson, MULTAN 87; Universities of York, England, and
Louvain-La-Neuve, Belgium, 1987.
14 XTAL 3.2 User’s Manual, ed. S. R. Hall and J. M. Stewart, Universities
of Western Australia and Maryland, 1992.
15 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National
Laboratory, Oak Ridge, TN, 1976.
In conclusion, two-atom spacers as in L2–L4 are suitable for
the incorporation of bent tridentate units into rod-like shape
receptors exhibiting thermotropic calamitic behaviours. A fine
tuning of the thermal properties results from the nature of the
spacer, while metallic size effects are responsible for the larger
stability of the Lu complex as previously reported for other
lanthanide-containing metallomesogens.7 The introduction of
spectroscopically and magnetically active LnIII into smectic
phases is currently under investigation.
We gratefully thank Mrs He´le`ne Lartigue, Dr J.-P. Rivera and
C. Fouillet for their technical assistance. C. P. thanks the
Werner Foundation for a fellowship. This work is supported
through grants from the Swiss National Science Foundation.
Received in Cambridge, UK, 7th August 1997; 7/05776H
2102
Chem. Commun., 1997